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Chapter 1: Introduction 

We are confronted with a world rich in visual information. Everyday we perceive 

complex and beautiful interactions of light and materials played out in their ex

pression of intricate optical phenomena. It is our aim to conduct research towards 

the simulation of these effects using physical models to not only produce con

vincing results, but to do so at interactive rates. Rendering algorithms have long 

been able to produce realistic images, see Figure 1.1, and with the steady increase 

in computational resources, have been able to render scenes with greater detail 

and complexity. But real-time simulation of complex, fully dynamic scenes, has 

remained an elusive goal. 

1.1 Motivation 

Our motivation is present in the beauty of the world around us. We are compelled 

to attempt to synthesize all the complex interactions demonstrated in Figure 1.2 

that nature computes implicitly. To this end we must simulate both direct and 

indirect light interactions. That is, the light that falls directly on a point in the 

scene and the light that may have scattered off of any other object anywhere else 

in the scene to arrive at the same point. The sum of both direct and indirect light 

interactions results in Global Illumination. 
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Figure 1.1: On the left a photograph of the Cornell Box, and on the right a 
simulated rendering of the same box. (Image courtesy of Cornell University) 

The difficulty in computing global illumination comes from the fact that light 

can bounce off virtually all objects, thus to compute the color at a point in the 

scene we must integrate over all incident illumination. This is the approach as 

formulated by the Rendering Equation by Kajiya [Kaj86], which has come to be 

the defining equation for physically based rendering and Global Illumination, in

deed all physically based rendering research is generally about solving this single 

equation. However, the Rendering Equation is extremely hard to solve, and likely 

impossible for many scenes. That the Rendering Equation is difficult to solve is due 

to several reasons; first, it requires global information about the scene (all geome

try, materials, and light information), second, it is a recurrence relation describing 

a potentially infinite recursion, and third, it is an integral over a continuous space. 

Thus, it follows that most attempts to “solve” the rendering equation are really 

attempts to find an approximate solution, and that these approximate solutions 

are often based upon the discretization of continuous domains, such as lighting, 
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Figure 1.2: Image demonstrating several global illumination effects; multiple dif
fuse and specular bounces, caustics and scattering. (Image courtesy of Tobias 
Ritschel [RDGK12]). 

scene geometry, and material properties. 

The costs associated with global illumination have long prevented it from being 

employed in the context of real-time rendering. Recently, however, as the power 

of modern GPUs has continued to increase at a rate that defies Moore’s law, and 

as rendering algorithms are adapted to their massively parallel architectures, we 

are beginning to see real-time simulation of effects previously relegated to slow, 

offline renderers. These effects, such as soft shadows, diffuse interreflection (color 

bleeding), caustics, and refractions all greatly enhance the visual perception and 

realism of a scene. Our work has focused on rendering techniques which enable 

these indirect illumination techniques while maintaining framerates suitable for 

real-time rendering. 
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1.2 Contributions 

We make contributions in the usage of spherical harmonics as a representation for 

the exitant radiance of discretized scene geometry, and also detail methods of con

structing an accurate hierarchy of approximate radiance values suitable for efficient 

sampling using cone tracing methods. Additionally, we build upon our recently 

developed hybrid computational voxelization techniques (see [Rau12]), and detail 

their extension towards the inclusion of appropriate voxel attributes. We detail 

a new technique for mipmapping a hierarchy of spherical harmonic values. We 

detail two methods for performing voxel cone tracing, each suitable to a particular 

component of indirect illumination. Further, we construct an efficient rendering-

pipeline which enables high-quality rendering with indirect illumination of fully 

dynamic scenes, including non-static geometry, lighting, and materials. 

1.3 Outline 

This dissertation is organized as follows. Background information concerning the 

theory of light transport is described in Chapter 2. We detail the components of the 

rendering equation, (see equation 2.10), and their application towards the accurate 

simulation of the interaction of light and materials. Additionally, we review useful 

properties of Spherical Harmonics (Section 2.2), and discuss the evolution of GPU 

hardware in Section 2.3. We review related real-time global illumination work in 

Chapter 3, as well as related work in voxelization (Section 3.7) 

In Chapter 4, we describe the process of efficiently discretizing scene geom
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etry, using our novel voxelization approach. Following voxelization, we discuss 

voxel storage formats, voxel sampling techniques, and voxel mipmapping strate

gies (Chapter 5). Chapter 5 is divided into a discussion of: the necessary voxel 

attributes to enable both isotropic and anisotropic radiance storage, and the adap

tations required to enable these in our voxelization approach (Section 5.1); ap

propriate sampling strategies for each voxel storage format (Section 5.2); and a 

description of an optimized mipmapping approach and how to create a hierarchy 

of radiance values (Section 5.3). 

Chapter 6 provides a straightforward introduction to the geometry of voxel 

cone tracing, followed by its application to several notable illumination effects. 

These include soft shadows (Section 6.2), ambient occlusion(Section 6.3), diffuse 

interreflection (Section 6.4), and glossy specular reflections (Section 6.5). 

Chapter 7 pulls together all the effects from Chapter 6 and discusses the process 

used to create a final voxel based rendering pipeline. Timings and results for 

the final image generation are also presented in this chapter, while timings for 

individual effects are presented in the associated sections of Chapter 6. Additional 

images are also listed in Appendix A to further corroborate presented results, while 

snippets of useful shader code are listed in Appendix B. 

Finally, in Chapter 8, we present our conclusions, discuss several directions for 

further optimizations and numerous potential avenues for future research based 

upon the foundation of this work. 
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Chapter 2: Background 

In this Chapter we introduce the background materials that form the building 

blocks for this thesis. In Section 2.1 we discuss light transport theory as it applies 

to global illumination rendering. In Section 2.1.3 we discuss the reflectance models 

used to define materials. In Section 2.1.4 we discuss the rendering equation, from 

which virtually all rendering research springs. In Section 2.2 we review spherical 

harmonics as they are an integral component of the research conducted in this 

dissertation. Finally, in Section 2.3 we discuss the evolution of GPU architecture 

along with the APIs that enable massively parallel graphics computation. 

2.1 Light Transport Theory 

The goal of rendering algorithms is to produce synthetic images of virtual scenes 

described by three-dimensional geometry, coupled with lighting and material in

formation. Global illumination rendering algorithms create these images via a 

physically accurate simulation of how light propagates through the virtual world. 

This simulation is described by light transport theory which details how light, or 

energy, is emitted from light sources, scattered by elements in the scene, and ul

timately arrives at the viewer, or “camera,” all of which is neatly encompassed 

by the rendering equation, (see Section 2.1.4). In this section, we first explore 
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the necessary background and develop the terminology needed to understand light 

transport and the rendering equation, and discuss the representation of materials 

using the bidirectional scattering distribution function. 

2.1.1 The Nature of Light 

In computer graphics we make many simplifying assumptions about the nature of 

light. For instance, while the wavelength of light determines its perceived color, 

typically we concern ourselves only with the wavelengths corresponding to the 

primary colors red, green, and blue (RGB). This simplification precludes the phys

ically accurate simulation of certain effects such as dispersion and fluorescence. 

Additionally, we typically rely upon the simplest model of light, that of ray optics; 

there also exists models in increasing order of complexity: wave optics, electromag

netic optics, and quantum optics [ST07]. The model of ray optics comes with the 

simplifying assumption that light traverses space instantaneously, which dictates 

that light can only be emitted, reflected, and transmitted. Despite this, we can 

still accurately reproduce a wide range of physical phenomena. 
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2.1.2 Radiometry
 

Figure 2.1: Flux, shown above, measures the amount of light falling on a surface 
area from all directions and is measured in watts [W], while radiant exitance (ra
diosity) measures the amount of light (flux) leaving a point in all directions and is 
measured in watts per meter squared[W · m−2]. 

Radiometry describes the physical measurement of electromagnetic radiation. In 

the context of this dissertation we use the term, light, to describe the visible spec

trum of electromagnetic waves. Radiometric units are useful in describing global 

illumination algorithms in that they define a common terminology for the physical 

quantities of light. In this section we review the basic radiometric quantities. 

The first radiometric quantity, radiant energy, denoted Q, describes the energy 

of light in joules [J]. Differentiating radiant energy in time leads us to radiant flux 

(see Figure 2.1), denoted Φ = dQ , which expresses the amount of energy emitted 
dt 

by a surface over time in watts [W]. When buying a light bulb, its listed wattage 

also describes its radiant flux [W = J · s−1]. Integrating radiant flux over time 

leads back to radiant energy, whereas differentiating radiant flux in area leads to 

irradiance, and differentiating in solid angle leads to intensity. 
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Figure 2.2: Irradiance integrates the total incident light over the hemisphere Ω 
and is measured in watts per meter squared [W · m−2]. 

Irradiance, denoted E, expresses the amount of incident power hitting a surface 

per unit area. Hence, it has units of [W · m−2]. Integrating radiance over area leads 

back to flux, while differentiating irradiance in direction will lead to radiance. The 

term irradiance implies a measure of the flux arriving at a surface location x. 

Conversely, the terms radiant exitance (M) or radiosity (B) are used instead if the 

flux is leaving a surface. More explicitly: 

  
W 

E (x) = 
dΦin (x) (2.1)
dA (x) m2

  
(x) W 

M (x) = B(x) = 
dΦout (2.2)
dA (x) m2

Radiance, denoted L, is perhaps the most important radiometric quantity for 

global illumination. It is closest to what we commonly conceive of as “light.” 

Radiance expresses how much light arrives from a differential direction ddω onto a 
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Figure 2.3: Radiance expresses the amount of light arriving at a point from a 
differential solid angle and has units [W · sr−1 · m−2]. 

hypothetical differential area perpendicular to that direction dA⊥. Radiance has 

units of [W · sr−1 · m−2]. This five-dimensional function of position and direction 

can be expressed as: 

ω) = 
d2Φ (x, dω) d2Φ (x, dω) d2Φ (x, dω) W 

L (x, d = = (2.3)
ddωdA⊥ (x) (dn · ωd ) dA (x) cos θddωdA (x) m2sr 

In this dissertation we employ the notation L (x ← dω) for incident radiance 

that arrives at a point x from direction dω, and similarly the notation L (x → dω) for 

exitant radiance leaving x in direction dω. The radiance invariance law states that 

radiance does not change along a ray in a vacuum, that is L (x ← dω) = L (x → dω). 

We can express the previously defined terms, irradiance and radiosity (radiant 

exitance) in terms of radiance as: 

ˆ ˆ
E (x) = L (x ← ωd ) (dn · ωd ) ddω = L (x ← dω) cos θddω (2.4) 

Ω Ω 
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Figure 2.4: The different forms of the bidirectional scattering distribution function. 
Above, the bidirectional reflection distribution function (BRDF) describes the light 
reflected at a point of the surface, while below, the bidirectional transmission 
distribution function (BTDF) describes the light transmitted through the material 
(Original image courtesy of Wikipedia). 

ˆ ˆ
M (x) = B (x) = L (x → ωd ) (dn · ωd ) ddω = L (x → dω) cos θddω (2.5) 

Ω Ω 

Where Ω is the visible hemisphere, intuitively we are integrating over all incident 

radiance adjusted for projected area. 
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2.1.3 Materials 

The interaction of lights and surfaces is a crucial component of rendering. The 

materials which make up these surfaces determine the manner in which the light 

is “scattered.” This “scattering function,” denoted by fs, is referred to as the 

bidirectional scattering distribution function, or BSDF, which generalizes the bidi

rectional reflection distribution function (BRDF fr) introduced by Nicodemus et 

al. [NN77], and the bidirectional transmission distribution function, BTDF ft, (cf. 

Figure 2.4). The main distinction between the BRDF and the BTDF is which 

hemisphere they are integrated over, the positive hemisphere Ω+ for the BRDF, 

and the negative hemisphere Ω− for the BTDF. Additionally, the bidirectional 

subsurface scattering reflection distribution function (BSSRDF, fss) introduced by 

Jensen et al. [JMLH01] describes light that enters a surface at one point, xi, and 

exits at another point, xo, after traveling beneath the surface of the material, hence 

subsurface. The BSDF is defined as the ratio of scattered exitant radiance to in

cident irradiance. More formally, the BSDF describes the appearance of a surface 

at a point x when viewed from a direction dωo while being illuminated by a light 

from direction dωi: 

dL (x → ωd o) dL (x → dωo) � 1 
fs (x, dωi, dωo) ≡ = (2.6)

dE (x ← ωd i) L (x ← ωd i) (dn · ωd i) d dωi sr 

BSDFs provide a more physically plausible model of reflectance as they are con

strained by the laws of thermodynamics [Vea98]. This means that they are non
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Figure 2.5: A perfectly diffuse, or Lambertian, BRDF. 

negative, as a surface cannot absorb more light than falls on it: 

fs (x, dωi, dωo) ≥ 0 (2.7) 

Additionally the BSDF is energy conserving, that is a surface cannot reflect more 

light than it receives: 

ˆ
fs (x, dωi, dωo) (dn · ωd o) ddωo ≤ 1, ∀ωi (2.8) 

Ω 

Lastly, the BSDF obeys the Helmholtz reciprocity principle, which means that the 

value of the BSDF stays the same when the incident and outgoing directions are 

swapped: 

fs (x, dωi, dωo) = fs (x, dωo, dωi) (2.9) 

This allows graphics algorithms to follows rays in either direction, either from the 

viewer towards the light, or from the light towards the viewer. 
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Figure 2.6: A perfectly specular BRDF, or “mirror.” 

There are many classes of BSDF. Isotropic BSDFs scatter light evenly in all 

directions, and thus depend on only one input direction, dωi, see Figure 2.5, this 

is also known as a Lambertian BRDF, and commonly used for modeling diffuse 

surfaces. The opposite of a perfectly diffuse surface is a perfectly specular surface, 

that is, a surface where dωo is a perfect reflection of dωi about the normal dn, this is 

what we commonly refer to as a “mirror,” see Figure 2.6. 

Any surface that is not perfectly diffuse or a mirror is “glossy,” and a repre

sentative BRDF exists somewhere between specular and Lambertian, see Figure 

2.7. 

2.1.4 The Rendering Equation 

The rendering equation as formulated by Kajiya in 1986 [Kaj86] was derived from 

previous research into radiative heat transfer [HSM10]. Fundamentally, it attempts 

to find the illumination, or more intuitively, “brightness,” at each point by eval
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Figure 2.7: Most materials exist somewhere between perfectly diffuse and perfectly 
specular, we refer to such as “glossy” BRDFs. 

uating everything that can be seen from that point. The illumination of these 

visible surfaces is in turn evaluated in the same manner, leading to a recursive 

formulation for the evaluation of illumination. 

2.1.4.1 Hemispherical Formulation 

In its simplest form, the rendering equation merely expresses the outgoing radiance, 

L (x → dωo), of any point x in a scene as the sum of the emitted radiance, Le, at 

the point x, and the reflected radiance, Lr, at the point: 

L (x → dωo) = Le (x → dωo) + Lr (x → dωo) (2.10)" v ' " v ' " v '
outgoing emitted reflected 

Expanding upon the reflected term in Equation 2.10 with surface geometry and 

reflectance functions (described in section 2.1.3) results in the hemispherical form 
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Figure 2.8: The exitant radiance at a point on a surface depends on the incident 
radiance over the hemisphere. The incident radiance field resembles a “fisheye” 
view from the point, while the exitant radiance is the integral of this value of the 
entire hemisphere. (Original image courtesy of Wojiech Jarosz [Jar08]). 

of the rendering equation: 

ˆ
L (x → dωo) = Le (x → dωo) + L (x ← dωi) fs (x, dωi, dωo) (nd · dωi) ddωi (2.11)" v ' " v ' " v 'outgoing emitted 

Ω+ 

reflected 

Since outgoing radiance at one point is dependent on the outgoing radiance at 

all other visible points in the scene, this means that the radiance, L, is defined 

in terms of its own integral, which we observe by noting that it appears on both 

sides of equation 2.11. We illustrate this distinction in Figure 2.8. This form of 

recursive integral is known as a Fredholm integral of the second kind. Save in only 

the most trivial cases, an analytic solution of such an integral is impossible. 

Making this an even more challenging problem is the fact that the rendering 
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Figure 2.9: The geometry term in the area formulation of the rendering equation 
describes the relation of energy transfer between differential surfaces, dAx and dAy, 
based on their relative angle and distance. 

equation performs an integration of a continuous domain. To fully appreciate this, 

one must consider the fact that most computer science problems are considered 

“hard” when finding a solution takes exponential time on an input n. However, this 

assumes a discrete problem domain; for a continuous domain, n isn’t even finite 

since the domain itself requires considering an infinite amount of input. Thus, if 

solving the rendering equation were merely exponentially hard it would be infinitely 

easier than solving the rendering equation in its current form [McG12]. 

2.1.4.2 Area Formulation 

Equation 2.11 represents the hemispherical formulation of the rendering equation. 

It can be useful to express the rendering equation as an integration over other 

surfaces in the scene rather than over the hemisphere. To this end, we must express 

the relationship between the differential solid angle, ddω, and the differential area 
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at another point y, by considering the solid angle subtended by dAy at the point 

x as illustrated in Figure 2.9 and given by: 

(dny · −dω) cos θy
ddω = 

 x − y 2 dAy = 
 x − y 2 dAy (2.12) 

In order to change the integration from the hemisphere to surface area we must 

take into account the visibility between surface points. To accomplish this we 

introduce a binary visibility function, V , which determines the mutual visibility 

between two points: 

⎧ 

V (x, y) = 

⎪⎪⎪⎨1 if x and y are mutually visible, 
(2.13)⎪⎪⎪⎩0 otherwise 

We can now transform Equation 2.11 into an integral over all surfaces, A, in the 

scene, as follows: 

ˆ (dnx · dωi) (nd y · −dωi)
L (x → dωo) = Le (x → dωo)+ fr (x, dωi, dωo) L (x ← y) V (x, y) dAy 

y∈A  x − y 2 

(2.14) 

To further simplify this expression we define the geometry term, G, as follows: 

(dnx · ωd i) (dny · −ωd i) cos θx cos θy
G (x, y) = = (2.15)

 x − y 2  x − y 2 



19 

The rendering equation can now be expressed as: 

ˆ
L (x → dωo) = Le (x → dωo) + fs (x, dωi, dωo) L (x ← y) V (x, y) G (x, y) dAy 

y∈A 

(2.16) 

This formulation allows us to integrate over the area of the other visible surfaces 

in the scene directly, rather than over the hemisphere Ω+. 

2.1.4.3 Direct and Indirect Illumination 

By reformulating the rendering equation as an integral over area, it allows us to 

directly integrate over the surfaces of light sources. This allows us to separate 

out the components of global illumination into direct illumination, i.e. the light 

arriving directly from light sources, and indirect illumination, i.e. the light arriving 

from all other sources. This allows us to express the outgoing radiance as: 

L (x → ωd o) = Le (x → ωd o) + Ldirect (x → ωd o) + Lindirect (x → ωd o) (2.17) 

This allows us to compute the direct and indirect contributions separately and 

using different techniques. We can take this approach further, as shown by Arvo 

et al. [ATS94]. We can think of light reflection as a convolution of incoming light, 

Li, with a BSDF, fr, producing outgoing light Lo, and rewriting in operator form, 

using a reflection operator K: 
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ˆ
Lo (x → ωd o) = Li (x → ωd i) fs (x, dωi, dωo) 

Ω 

Lo (x → ωd o) = (KLi) (x → ωd o) 

Lo = KLi 

Next, we define a geometry operator G: 

(GL) = L (x' (x, ω) , ω) (2.18) 

where x' (x, ω) is the closest point from x in direction ω. This operator includes 

the visibility term and turns distant surface radiance into local incident radiance, 

allowing us to rewrite the rendering equation as: 

L = E + KGL (2.19) 

L = E + TL (2.20) 

where T is the transport operator. This equation can then be solved using an 

infinite Neumann series where each summand represents one bounce of light: 

∞0 
L = E + TiE (2.21) 

i=0 
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or,
 

L = E + TE + T2E + T3E + . . . (2.22)"v ' " v ' " v ' 

1st bounce 2nd bounce 3rd bounce 

allowing us to categorize rendering methods by the number of bounces of illumi

nation considered. 

2.2 Spherical Harmonics 

In this section we review the formulation, notation and properties of spherical 

harmonics as they are a critical component of research detailed in later chapters 

of this dissertation, we largely follow the notation used in Jarosz [Jar08]. 

The Legendre polynomials are at the heart of the Spherical Harmonics, a math

ematical system analogous to the Fourier transform, but defined across the surface 

of a sphere. 

Firstly, a harmonic is a function that satisfies Laplace’s equation:

 2f = 0 (2.23) 

Spherical harmonics are an infinite set of harmonic functions defined on the 

sphere. They are derived by solving the angular portion of Laplace’s equation in 

spherical coordinates using separation of variables. The spherical harmonic basis 

functions derived in this fashion take on complex values, but a complementary, 

strictly real-valued, set of harmonics can also be defined. In the context of com
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puter graphics, we restrict our discussion to the real-valued basis, since we generally 

only deal with real-valued functions. 

If we represent a direction vector dω using the standard spherical parametriza

tion, 

ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (2.24) 

the SH function is traditionally denoted by the symbol y, where the real spher

ical harmonic basis functions are defined as: 

⎧ 
√

2K cos (mϕ) P
ml (cosθ) , if m > 0
m
l

0Kl

⎪⎪⎪⎪⎪⎪⎪⎪⎨ 
(2.25)
y
 ml =
 

l

2K

P 0 

√
(cos θ) , if m = 0
 

lsin (−mϕ) P −m 

where P is the associated Legendre polynomial and K is a scaling factor to 

normalize the functions: 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ (cosθ) if m < 0
m
l

K
ml =


    (2l + 1) (l − |m|)! (2.26)4π (l + |m|)! 

In order to generate all the SH functions, l is a positive integer starting for 0, 

but m takes signed integer values from −l to l: 

y
 ml (θ, ϕ) where l ∈ R+ , − l ≤ m ≤ l (2.27) 

Sometimes it is useful to think of the SH functions occurring in a specific order 

so that we can flatten them into a 1D vector, so we will also define the sequence 
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Figure 2.10: The first 5 SH bands plotted as unsigned spherical functions by 
distance from the origin and by colour on a unit sphere. Green (light gray) are 
positive values and red (dark gray) are negative. Image courtesy of [Gre03]. 

yi: 
m yl (θ, ϕ) = yi (θ, ϕ) where i = l (l + 1) + m (2.28) 

The first 5 SH bands plotted as unsigned spherical functions by distance from 

the origin and by color on a unit sphere can be seen in Figure 2.10, while the 

polynomial forms of the first 3 bands of the spherical harmonic basis functions 

are listed in Table 2.1. The spherical harmonic functions along the center column 

(i.e. m = 0) of Figure 2.10 are known as the as the zonal harmonics, and they are 

circular symmetric. Those functions along the edges, where l = |m|, are known 

as the sectoral harmonics. All other spherical harmonics are referred to as the 

tesseral harmonics. 
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m = −2 m = −1 m = 0 m = 1 m = 2 

l = 0 
√

1 
2
√ 
π√ √

l = 1 − 3y 
2
√ 
π 

3z 
2
√ 
π√

− 3x 
2
√ 
π √

l = 2 
√

15yx 
2
√ 
π − 

√
15yz 

2
√ 
π 

5(3z2−1) 
4
√ 
π − 

√
15xz 

2
√ 
π 

15(x2−y2) 
4
√ 
π 

Table 2.1: The polynomial forms of the spherical harmonic basis functions of the 
first 3 bands (m = 0 . . . 2 and l = −2 . . . 2). 

2.2.1 Projection and Expansion 

As the spherical harmonics define a complete basis over the sphere, any real-

valued spherical function f may be expanded as a linear combination of the basis 

functions: 

∞ l0 0 
mf (dω) = yl (ωd ) flm (2.29) 

l=0 m=−l 

where the coefficients fl
m are computed by projecting the real-valued spherical 

mfunction, f , onto each basis function yl : 

ˆ
fm m 
l = yl (dω) f (ωd ) ddω (2.30) 

Ω4π 

With an infinite number of coefficients, this expansion would be exact as l goes 

to infinity. However, by limiting the number of bands to l = n − 1 we retain only 

ththe frequencies of the function up to some threshold. We can obtain an n order 

band-limited approximation f̃  of the original function f as follows: 

n−1 l0 0 
mf̃ (dω) = yl (dω) flm (2.31) 

l=0 m=−l 
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Just a few bands allow us to approximate low-frequency functions. Higher 

frequency signals require more bands, and quadratically more coefficients. It can be 

helpful to “flatten” the indexing scheme to use a single parameter i = l (l + 1)+m. 

This convention make it clear that an nth order approximation can be reconstructed 

using n2 coefficients: 
n02−1 

f̃ (dω) = yi (dω) fi (2.32) 
l=0 

2.2.2 Properties 

There are many properties of spherical harmonics that make them particularly 

useful for use in computer graphics, we describe several of the most significant 

here. 

2.2.2.1 Convolution 

The spherical harmonic basis inherits a similar frequency space convolution prop

erty as a Fourier domain basis. If h (z) is a circularly symmetric kernel, then the 

convolution h * f is equivalent to weighted multiplication in the SH domain: 

4π(h * f)ml = l fl
m (2.33)2l + 1h0 

and flattened as: 

= (h * f)m = (h * f)(l(l+1)+m) 

4π(h * f)i l = 2l + 1h(l(l+1))f(l(l+1)+m) (2.34) 
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The convolution property allows for efficient computation of prefiltered environ

ment maps and irradiance environment maps [RH01]. Note, that the kernel func

tion, h (z), must be circular symmetric, as the result of a non-symmetric convolu

tion would not be defined over the sphere. 

2.2.2.2 Orthonormality 

The inner product of any two distinct SH basis function is zero due to the fact 

that spherical harmonics are orthogonal for different l and different m. In addition 

the inner product of a basis function with itself is one due to the normalization 

constant Kl
m. This can be expressed as: 

ˆ
yi (dω) yj (dω) ddω = δij (2.35) 

Ω4π 

where δij is the Kronecker delta function. The orthonormal basis functions of 

spherical harmonics allow for the efficient projection and expansion operations 

described above, in addition to many other operations. 

2.2.2.3 Rotational Invariance 

Let us define g to be a representation of function f as rotated by some arbitrary 

rotation R over the unit sphere. We can define the following relationship: 

g (dω) = f (Rdω) (2.36) 
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which implies that it does not matter if the function or the input has been rotated, 

the outcome remains the same. This rotational invariance means that there will 

be no aliasing artifacts when samples from f are collected at a rotated set of 

sample points. For example, rotating a light function will not cause any amplitude 

fluctuations. 

2.2.2.4 Double Product Integral 

Thanks to the orthonormality property, we can express the integrated product of 

two spherical harmonic functions as a simple expression. The integral product of 

two SH functions ã (ωd ) and b̃ (ωd ) can be expanded as: 

⎞ ˆ ˆ � �⎛ 0 0 
ã (ωd ) b̃ (dω) = aiyi (ωd ) ⎝ bj yj (ωd )⎠ ddω 

Ω4π Ω4π i j ˆ00 
= aibj yi (dω) yj (ωd ) ddω (2.37) 

i j Ω4π" v ' 
Cij 

where Cij are called the coupling coefficients, which, due to the definition of 

orthonormality in Equation 2.35, are simply Cij = δij . This simple form for the 

coupling coefficients introduces significant sparsity in the expression above, leading 
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to the simplification: 

ˆ 00 
ã (ωd ) b̃ (ωd ) = aibiCij 

Ω4π i j00 
= aibiδij (2.38) 

i j0 
= aibi 

i 

Effectively, this means that the integrated product of two SH functions can be 

computed as the dot product of their coefficient vectors. That this integral can 

be computed by a simple dot product means that lighting can be computed very 

efficiently in the frequency domain. By expressing both the lighting and the cosine-

weighted BRDF as spherical harmonics, the lighting integral can be evaluated using 

a simple dot product. Many existing precomputed rendering techniques (PRT) 

exploit this property [SKS02, KSS02]. 

2.2.2.5 Double Product Projection 

Sometimes we want to compute the product of two spherical harmonic functions 

directly in the SH basis. We can compute the ith coefficient of the SH projection 
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of the product c (ωd ) = a (dω) b (ωd ) as: 

ˆ
ci = yi (ωd ) c (dω) ddω 

Ω4π ˆ
= yi (ωd ) a (dω) b (ωd ) ddω 

Ω4π ⎛ ⎞ ˆ 0 0 ⎝ ⎠= yi (ωd ) aj yj (ωd ) bkyk (ωd ) ddω (2.39) 
Ω4π j k ˆ00 

= aj bk yi (ωd ) yj (dω) yk (ωd ) ddω 
j k Ω4π 00 

= aj bkCijk
 
j k
 

where Cijk are the tripling coefficients, a sparse set of coefficients which corre

spond to Clebsch-Gordan coefficients, whose analytic values and properties are 

well studied [Tin03]. This expression states that the ith coefficient of c is a linear 

combination of the, up to, j × k coefficients from a and b. The weighting of these 

terms is determined by the tripling coefficients, which are independent of the par

ticular choice of a and b. This allows us to compute the tripling coefficients once 

for an efficient evaluation of product projection for many pairs of functions. 

2.3 GPU Evolution 

Graphics hardware evolution has far outpaced that of CPUs for several processor 

generations now, and the programming models that have been developed for them 

have come to dominate the parallel-programming landscape due to the ubiquity 

of graphics processors in everyday devices. As much of our work focuses on effi
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Figure 2.11: The Kepler GK110 (Titan) die. The Titan GPU has 2,688 shader 
cores and uses over 7.1 billion transistors. 

cient utilization of the GPU and its resources, we will briefly describe some of the 

evolutionary changes that have impacted this work. 

Modern GPUs are massively parallel devices (cf. Figure 2.11) whose perfor

mance scaling is predominantly dependent on the number of processors rather than 

clock-speed or pipeline depth (cf. Figure 2.12). This makes GPUs extremely good 

at executing batches of the same instructions in parallel. On appropriate work

loads, this approach scales extremely well with the number of shader processors. It 

also allows far greater peak theoretical computational throughput as more of the 

chip is dedicated to computation rather than increasing processor complexity (see 

Figure 2.13). In order to accommodate the massive amounts of data processed by 

GPUs, total memory bandwidth has also scaled at a much faster rate than that of 

CPUs (cf. Figure 2.14). 
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Figure 2.12: Increase in the number of “Shader Processors” in Nvidia GPUs over 
time. Credit: [Gai12] 

Figure 2.13: Comparison of GFLOPS available in successive iterations of Nvidia 
and Intel processors. Credit: [Gai12] 
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Figure 2.14: Bandwidth comparison of Intel CPUs and Nvidia GPUs. Credit: 
[Gai12] 

2.3.1 API Evolution 

For the past decade, commercial graphics hardware has been tightly intertwined 

with the two main APIs with which it can be programmed: that of Microsoft’s Di

rectX API [Wik13] and that of the industry consortium Khronos, OpenGL [SA13]. 

The capabilities of which are largely reflected in the capabilities exposed in each 

new Shader Model (SM). For the purposes of this dissertation, we concern ourselves 

primarily with the features exposed by the OpenGL API. Digging up the features 

exposed during each Shader Model is a tedious exercise in technical writing arche

ology, particularly as they are often described in terms of the competing APIs 

evolving version numbering schemes. An attempt to correlate the shader model, 

API versions and capabilities can be seen in [Men12]. Suffice it to say that as the 

programming model has evolved from SM 1.0 to the most recent SM 5.0, more 
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and more flexibility and control has been added to the graphics pipeline. Initially, 

only vertex and fragment shaders were available as programmable pipeline stages, 

OpenGL 3.2 introduced programmable geometry shaders, while OpenGL 4.0 in

troduced tessellation shaders. Finally, OpenGL 4.3 introduced compute shaders 

which eschew the traditional graphics pipeline altogether and attempt to utilize 

the GPU as a purely general purpose massively parallel processor. 

As the GPU has evolved, so too has the graphics pipeline, indeed it no longer 

resembles a pipeline so much as a convoluted subway map (cf. Figure 2.15). There 

are many ways to traverse the map as many pipeline stages are optional, and 

many components remain due to legacy support. However, attempting to combine 

bleeding edge features with legacy components can lead to extreme performance 

degradations. The ARB_shader_image_load_store [BB11] extension added a fun

damentally new way to write to textures in OpenGL, by binding textures to an 

“image” unit, whereas previously texture writes were an operation restricted to 

the framebuffer. However, this bleeding edge feature introduces a number of con

straints, for instance even the best hardware has only 8 image units, a crippling 

limitation when one considers that each mip-level of a texture must be bound to 

a separate “image.” Additionally any texture bound to an “image” unit cannot 

simultaneous be bound to a “texture” unit, furthermore attempting to alternate 

between image writes and framebuffer writes on the same texture (i.e. mixing old 

and new code paths) leads to severe performance degradations. 
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Figure 2.15: The modern graphics “pipeline,” which now more closely resembles a 
subway system map. (Image courtesy of the Khronos Foundation) 
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Chapter 3: Related Work 

Unquestionably the two greatest sources of influence on this work have been the 

Voxel Cone Tracing work by Crassin et al. [CNS∗11, Cra11], and the Light Prop

agation Volume work by Kaplanyan et al. [KD10]. In this chapter we will discuss 

these influences in addition to some of the corpus of work that lead to them, and 

subsequently, this work. Although for an overview of the state of the art in global 

illumination it would be virtually impossible to surpass the quality of the survey 

by Ritschel et al. [RDGK12]. Finally, as much of our work is dependent upon a 

fast voxelization (discussed in Chapter 4), we also discuss related work in the field 

of voxelization (cf. Section 3.7). 

3.1 Early Global Illumination 

Early global illumination research was dominated by two algorithms–ray tracing 

and radiosity, both of which are discussed below, and revisited throughout this 

chapter as they are adapted to ever more sophisticated global illumination meth

ods. 



36 

3.1.1 Ray Tracing 

Ray tracing was introduced by Turner Whitted in 1980 [WH80]. The original paper 

used rays for determining visibility through a single pixel and also used rays to 

compute direct illumination, specular reflection, and refractive illumination effects. 

As such, this seminal paper described a major new tool in generating images. 

The ray tracing algorithm has been researched and implemented extensively 

during the subsequent decades. Initially, much attention was on efficiency, using 

well-known techniques such as spatial subdivision and bounding-volumes. More 

and more, the focus was also on lighting effects themselves. By treating ray tracing 

as a tool for computing integrals, effects such as diffuse reflections and refractions, 

motion blur, lens effect, etc. could be computed within a single framework. Many 

of the global illumination algorithms discussed below employ some form of ray 

shooting. However, ray tracing had difficulty reproducing indirect illumination 

effects such as color bleeding and diffuse reflections. 

3.1.2 Radiosity 

A solution supporting indirect illumination effects came in the form of a finite-

element method called Radiosity, introduced by Goral et al. in 1984 [GTGB84]. 

Radiosity is based on the calculation of energy transfer between all surface elements 

in a scene. This has the drawback that many costly visibility tests are required to 

perform an accurate computation. 

In radiosity, the distribution of light is computed by subdividing the scene into 
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surface elements (patches) and computing for each element the correct radiometric 

value. Once the radiosity value for each surface element was known, the solution 

could be displayed with existing graphics hardware. Early radiosity research was 

centered around computing a faster solution for the linear system of equations that 

expressed the equilibrium of the light distribution in the scene. 

Initially, radiosity was limited to diffuse surfaces, and the accuracy of the 

method was set by the choice of surface elements. Finer details in the shading 

at a frequency higher than the initial mesh could not be displayed. 

3.2 Evolution of Global Illumination 

As the sheer computational intensity of global illumination became apparent, sev

eral avenues of optimization and acceleration were explored. Traditional techniques 

were adapted onto the GPU, new techniques like Instant Radiosity [Kel97], Light-

cuts [WFA∗05], and Photon Mapping [Jen01] were developed, and hierarchical 

adaptations of traditional techniques were introduced. 

3.2.1 GPU Ray Tracing 

Early experiments with GPU ray tracing methods relied on the versatility of pro

grammable graphics hardware and used fragment shaders to perform ray-primitive 

intersections [CHH02, PBMH02]. 
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3.2.2 GPU Radiosity 

Several full radiosity based global illumination algorithms tailored to GPUs were 

proposed. Dachsbacher et al. [DSDD07] and Dong et al. [DKTS07] demonstrated 

global illumination using techniques based on hierarchical radiosity, yet avoided 

traditional visibility computation. Only per-vertex and low-frequency lighting was 

supported due to directional discretization. Dachsbacher and Stamminger [DS05] 

introduced the idea of reflective shadow maps, where shadow map texels correspond 

to virtual point lights. However, no hierarchical lighting and no visibility were 

taken into account. Martin et al. [MPT98] computed a coarse-level hierarchical 

radiosity solution on the CPU, and used graphics hardware to refine the solution 

by texture mapping the residual. In each of these cases, graphics hardware is used 

to accelerate elements of the radiosity solution, but the bulk of the processing 

occurred on the CPU. 

Among attempts to accelerate radiosity, the hemi-cube approach [CG85] used 

graphics hardware to identify the patches visible from a given patch in the scene, 

attacking form factor computation, generally considered the bottleneck of radiosity 

techniques. More recently [CHL04], and [CHH03] proposed methods for GPU-

based radiosity. The former relied on texturing and visibility testing, whereas the 

latter used the GPU to process the radiosity matrix. 
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Figure 3.1: A comparison of direct illumination only on the left vs. global illumi
nation on the right. Image credit: [DSDD07]. 

3.2.3 Hierarchical Radiosity 

A large body of research on hierarchical radiosity (HR) was started by the seminal 

paper by Hanrahan et al. [HSA91]. These approaches essentially approximated 

blocks of the matrix with a constant, and used error estimation oracles to decide 

whether to subdivide or approximate, see Figure 3.1. Importance [SAS92] can be 

used to speed up the convergence of these techniques. 

Hierarchical radiosity proved to be a major step forward, since the algorithm 

was now able to adapt its underlying solution mesh to the actual shading values 

found on those surfaces. Discontinuity meshing was similarly used to precompute 

accurate meshes that followed the discontinuity lines between umbra and penum

bra regions caused by area light sources. The algorithm was also extended by 

subdividing the hemisphere around surfaces in a mesh as well, such that glossy 

surfaces could also be handled. On the other side of hierarchical radiosity, cluster
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Figure 3.2: An illustration of hierarchical radiosity refinement. Credit: [HSA91]. 

ing algorithms were introduced to compute the illumination for disjunct objects in 

single clusters. 

A hierarchical radiosity technique that took advantage of temporal coherence 

was introduced by Drettakis et al. [DS97], but it did not scale to high-complexity 

geometry and materials. Some promising approaches based on hierarchical radios

ity have been presented that avoid the computation of visibility, notably [Bun05] 

and [DSDD07]. These methods provided very fast solutions; however, their draw

back is that the antiradiance (i.e. light that has to be subtracted to correct for 

ignoring visibility) is a highly directional quantity, so a large number of directional 

samples were needed for each patch to maintain accuracy. This causes these meth

ods to have difficulty scaling beyond a few thousand patches without compromising 

the accuracy of indirect and environment shadows. 
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3.2.4 Instant Radiosity 

Instant Radiosity (IR), introduced by Keller in 1997 [Kel97], was one of the first 

techniques to exploit the graphics pipeline. The key insight of instant radiosity 

was that indirect illumination could be modeled as direct illumination by placing 

secondary light sources, referred to as virtual point lights (VPLs), in the scene 

on surfaces where indirect light is to be emitted, see Figure 3.3. Rendering can 

then be done on the GPU, with visibility handled by shadow mapping, achieving 

near-interactive rates. However, this approach is not without its drawbacks, the 

VPL placement must be found using simulated photon trajectories to discover 

intersections in the scene, and the resultant number of VPLs is often prohibitively 

large. 

Instant incremental radiosity [LSKL07] is a promising adaptation for one-

bounce indirect illumination that manages a set of 256 VPLs as illumination 

changes, without retracing new particles. However, for interactive performance, 

it uses sparse interleaved sampling of the image, and re-renders at most 10 shadow 

maps per frame, which is only correct for a static scene. 

Instant radiosity techniques do not capture all kinds of light transport equally 

well, in particular, they have difficulty reproducing caustic effects, and they are 

generally limited to 1-bounce global illumination. 
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Figure 3.3: VPLs for indirect illumination using Instant Radiosity, the VPL in the 
middle represents second bounce indirect illumination. Image credit: [Kel97]. 

3.2.5 Lightcuts 

The Lightcuts algorithm introduced by Walter et al. in 2005 [WFA∗05], attempted 

to improve on the scalability issues of Instant Radiosity. Its approach is based on 

the premise that a clustering of lights in the scene can be used to approximate the 

full solution, yet no single partitioning of the lights in the scene is likely to work 

over the entire image. Thus, the light tree is introduced, essentially a binary tree 

used to store a hierarchical evaluation of scene irradiance represented as point light 

sources. Clustering is used to progressively approximate groups of lights, which are 

stored at nonleaf nodes in the tree, where the leaves are individual lights and the 

interior nodes are light clusters containing the lights below them in the tree. So we 

are left with a tree in which, each node has a representative light that approximates 

the contribution of all the lights in the node’s cluster. Computing the incoming 

radiance at a given point requires making a cut through the tree in order to select 

a small subset of lights with an error below a given threshold. This approach is 

effective because it unifies the computation of both direct and indirect illumination, 
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permitting highly efficient irradiance interpolation using reconstruction cuts. 

Multidimensional lightcuts [WABG06] extended the basic lightcuts algorithm 

to handle motion blur and participating media, but does not amortize over multiple 

frames. Both lightcuts and multidimensional lightcuts require an approximation of 

the lighting solution in order to perform light clustering, thus reducing performance 

and making lightcuts essentially a two-pass algorithm. 

Arbee et al. [AWB08] introduced a single-pass importance driven variant of 

the Lightcuts algorithm, and extended it for subsurface scattering and translucent 

materials. Coherent Lightcuts [BD08], exploited pixel coherence to improve cut 

construction and reduce rendering times, and has the advantage of not requiring 

an approximate solution. 

Lightcuts and its variant share the weakness that they rely on a ray-tracer to 

compute visibility. Though the algorithm achieves sublinear performance in the 

number of point lights, it achieves this using complex data structures and traversal 

mechanisms that are not easily parallelizable, and thus will not scale with improved 

parallel processors. 

3.2.6 Photon Mapping 

Photon mapping is another popular technique popularized by Jensen in [Jen01], 

which has also been given the GPU treatment. The GPU ray tracing work from 

[PBMH02] has been extended to photon map rendering [PDC∗03]. Another photon 

map rendering method is presented in [MM02]. Both approaches suffered from the 
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Figure 3.4: Light tree and three example cuts, the highlighted areas represent 
regions where error is small. Image credit: [WFA∗05]. 
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same drawback: the current GPU architecture did not allow for efficient handling 

of complex data structures such as trees, which are commonly used in ray tracing 

optimization and photon map storage. Therefore, the photon map is stored in 

a regular grid [PDC∗03], or in a costly hash table [MM02]. The related nearest-

neighbors queries were simplified to meet the data structure and GPU constraints, 

yielding quality or performance drops. 

Other GPU-accelerated photon map rendering methods have been proposed. 

Larsen et al. [LC04] used graphics hardware to perform the costly final gather

ing: the photon map was built on the CPU using the classical method defined in 

[Jen01]. For each surface, an “approximate illumination map” was built using the 

data contained in the photon map. The GPU was used to perform final gather

ing and caustics filtering. The approaches presented in [SB97] and [LP03] used 

the GPU for irradiance reconstruction: each photon was rendered as a textured 

quadrilateral. The corresponding texture represented the kernel function for the 

photon. Although those methods showed encouraging results, they were bounded 

by the large number of photons required to render a high quality image. 

Although photon mapping provides a solution to many difficult problems in 

global illumination, the algorithm by itself is often inadequate or inefficient under 

complex lighting conditions. There has been a great quantity of research done 

into improving efficiency in all areas of the algorithm to deal with these situations, 

including new methods of density estimation, photon propagation, and sampling. 

Poor-quality results caused by inadequate under representation of illumination 

by the photon map is a well studied problem. A number of solutions have been 
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proposed, which focus on optimizing the distribution of photons prior to render

ing. Visual importance sampling [KW00], [PP98] and a technique based on the 

Metropolis-Hastings algorithm [FCL05] have all shown to be effective at storing 

photons in a much more optimal distribution pattern. Conversely, unnecessary over 

representation in certain areas has been addressed using density control [SW00] 

to restrict photon storage in areas of strong incident illumination. Tawara et al. 

[TMS04a] introduced a novel method also based on importance sampling, which 

separated strong and weak diffuse illumination into two independent data sets to

gether with a voxel grid containing information about photon density. Havran 

et al. [HHS05] accelerated final gathering by performing the process in reverse, 

computing density estimations at each photon and propagating the irradiance to 

nearby gather ray hits. 

3.3 Advanced Global Illumination 

New global illumination techniques continue to abound, as well as many variants 

and hybrid techniques. Several major research directions such as Precomputed 

Radiance Transfer [Leh04], (Ir)radiance caching [WRC88], and spherical function 

representation have been very actively researched. 
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3.3.1 Advanced Hierarchical Methods 

Hierarchical data structures are widely used throughout computer graphics to store 

data at progressive levels of detail. When accessed according to an error metric, 

these structures may be used to reduce image artifacts and improve the efficiency 

of global illumination algorithms 

The mipmapping concept was extended independently by Benson and Davis 

with octree textures [KLS∗05] and by DeBry et al. with octexes, both of which 

compensated for the poor performance of 2D mipmaps on complex 3D surfaces. A 

volumetric GPU-friendly octree data structure based on mipmapping, called the 

Histopyramid, was also introduced in [DZTS07], with application to many areas. 

Jensen and Buhler [JB02] use a hierarchical data structure to rapidly evaluate 

the BSSRDF of translucent materials. Irradiance is sampled across the surface of 

translucent objects and is progressively stored throughout the nodes of an octree. 

Using approximated samples where it is appropriate, greatly accelerated evalu

ation of the diffusion approximation when compared to evaluating each sample 

individually. 

The irradiance atlas [CB04] used a sparse adaptive octree to represent photon 

maps that are too large to be held in memory. The irradiance stored at each 

photon is compiled into a hierarchical data structure called a brick map. This 

approach allowed irradiance data to be cached and swapped in and out of memory 

efficiently and made rendering scenes containing extremely detailed photon maps 

practical, even with limited memory. As a result of the progressive approximation, 
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sampling from the brick map also benefits from filtering, resulting in a reduction 

in noise. Yue et al. [YIDN07] employed a similar volumetric data structure to 

evaluate irradiance from surfaces, allowing relighting of scenes at interactive frame 

rates. 

3.3.2 Precomputed Radiance Transfer 

Precomputed Radiance Transfer (PRT) is a method to quickly compute the re

flection integral for a given environment, e.g. [SKS02, KSS02, SLS05][NRH04, 

HPB07]. Radiance (or irradiance) is stored in some fashion, such that it can be 

recovered later. These techniques are based on extensive precomputation to render 

static or dynamic scenes under distant or indirect illumination. The classic PRT 

[SKS02] approach allowed static scenes under distant low-frequency lighting, vis

ibility and BRDFs, which were extended to all frequencies in [NRH04] and other 

follow up work. In PRT, scenes are usually assumed to remain static. Limited 

dynamic scenes (rigid objects) can be supported, e.g. by Zhou et al. [ZHL∗05], 

but indirect illumination is then very difficult to achieve [IDYN07, PLPB07]. This 

was generalized to deforming geometry in [RWS∗06]. Recently, Akerlund et al. 

[AUW07] demonstrated real-time one-bounce global illumination in conjunction 

with local lighting. However, geometry still needed to be static due to the use of 

precomputed visibility. 

PRT permits the efficient rendering of many illumination effects on static ob

jects, such as soft shadows and glossy reflections, in real-time [SKS02, NRH03, 
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LSSS04]. The illumination solution is parametrized by the incident lighting, that 

is assumed to be represented by means of basis functions, such as spherical har

monics [SKS02] or wavelets [NRH03], which allowed for efficient rendering. PRT 

exploits the restriction to static objects by pre-computing all the visibility queries 

and baking them into the parametrized solution. 

Generally, lighting in PRT is assumed to be distant. However, low-frequency 

localized lighting can be integrated [AKDS04]. When only indirect illumination is 

considered, local point and spot lights are possible [KAMJ05, KTHS06, HPB06]. 

Dynamic scenes are inherently difficult for PRT techniques, since visibility can 

no longer be precomputed. Mei et al. [MSW04] precomputed visibility on a per-

object basis for a discrete set of directions and stored it in the form of uncompressed 

shadow maps. This allowed them to render multiple rigidly moving objects under 

low-frequency distant illumination. However, dynamic local light sources remained 

infeasible. Similar in spirit, Zhou et al. [ZHL∗05] proposed the use of shadow fields, 

which allowed movement of individual rigid objects under semi-local (lights may 

not enter an object’s bounding sphere) or distant illumination, producing correct 

inter-shadowing. In practice, this technique was limited to low-frequency light

ing, as all frequency lighting updates took several seconds for dynamic scenes. 

Dynamic objects were even more difficult to handle, as no precomputation can 

be employed. Hemispherical rasterization [KLA04] and spherical harmonics expo

nentiation [RWS∗06] have been proposed for small- or medium-sized scenes under 

low-frequency illumination. 

Kristensen et al. [KAMJ05] described a technique for rendering indirect il
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lumination from omnidirectional, local, moving light sources. The results were 

impressive, but dynamic objects were not supported, and preprocessing costs were 

substantial. Kontkanen et al. [KTHS06] extended wavelet radiosity for comput

ing a full hierarchical direct-to-indirect transport operator for a static scene. The 

technique supported all types of light sources, and, in principle, glossy BRDFs. 

However, dynamic objects could not be easily supported. Furthermore, precom

putation still took tens of minutes. 

Coherent Shadow Maps (CSMs) by Ritschel et al. [RGKM07] used a shadow 

map based data structure, but enhanced such that it could be used for physically-

based real-time rendering as a PRT-like technique. CSMs exploit coherence be

tween many shadow maps for compression, and support all-frequency lighting, 

dynamically moving rigid objects, local as well as distant light sources, and dy

namic material properties. Nonetheless, the method is fast, supports progressive 

rendering for even faster updates, and is memory efficient through the use of CSMs. 

However, CSMs are unable to model self-shadowing on objects. Coherent Surface 

Shadow Maps (CSSMs) [RGKS08] rectified this deficiency, allowing for visibility 

tests between moving objects and a high number of lights outside their convex 

hulls using simple shadow mapping, see Figure 3.5. 

Precomputed radiance transfer is an excellent technique to support interactive 

previewing of lighting and material changes in static scenes, but the cost of often 

several minutes to hours of precomputation and (in some cases) fixing the camera, 

limits its interest. 
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Figure 3.5: Images generated by the Coherent Shadow Map approach. Image 
credit: [RGKM07]. 

3.3.3 (Ir)Radiance Caching 

Radiance and irradiance are two similar, yet distinct, and often confused quantities, 

hence radiance caching and irradiance caching methods are often referred to as 

(ir)radiance caching methods. Regardless, (ir)radiance caching was first proposed 

by Ward et al. [WRC88] as a means of computing indirect diffuse inter-reflections 

in a distributed ray tracer [War94]. The technique exploited the smoothness of the 

indirect illumination by sampling the irradiance sparsely over surfaces, caching the 

results and interpolating them. 

For each ray hitting a surface, the irradiance cache is queried. If one or more 

irradiance records are available, the irradiance is interpolated using irradiance gra

dients, see Figure 3.6. Otherwise a new irradiance record is computed by sampling 

the hemisphere and added to the cache. In this way, the cache gets filled lazily, 

progressively in a view dependent manner. As it gets filled, more and more irradi

ance computations can be carried out by interpolation. Ward used an octree for 

storing the irradiance records. In [WH92] the interpolation quality is improved by 
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the use of irradiance gradients. 

In [Nij03, NPG05], Nijasure et al. proposed a volumetric irradiance cache 

method for non-diffuse global illumination computation using graphics hardware. 

The incoming radiance function at a number of locations a priori selected was sam

pled and projected into the spherical harmonics basis. Then the incoming radiance 

at any surface point is estimated by interpolating the incoming radiance at nearby 

sample locations. Although the authors demonstrate real-time performance, the 

main drawback of this method is the choice of sample points. In [Nij03, NPG05] 

these points are placed on a regular grid inside the volume of the scene, therefore 

not adapting to the lighting complexity. 

The irradiance caching concept was extended to radiance caching by Krivanek 

et al. [KGPB08], [KGBP05] in which incoming radiance at each sample was stored 

using hemispherical and spherical harmonic coefficients. This allowed for much 

more accurate interpolation, especially over high-frequency BRDFs. 

Radiance cache splatting [GKBP05][KGPB08] presented an algorithm for one-

bounce global illumination that took advantage of illumination coherence by sub-

sampling it at a sparse set of locations. Temporal radiance caching [GBP08] accel

erated computation of global illumination for image sequences by reusing samples 

between frames. Reflective shadow maps [DS05] and Splatting indirect illumina

tion [DS06] provided interactive solutions for one-bounce global illumination, but 

neglected shadowing effects in the indirect bounces. 

Radiance interpolation can be used whenever there is a certain level of smooth

ness in the radiometric quantity being computed. All radiosity methods use in
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Figure 3.6: (Ir)Radiance Gradients. Image credit: [KGW∗07]. 

terpolation in the form of surface discretization. They adapt to the irradiance 

smoothness by adaptive geometry subdivision, e.g. [HSA91, Hec91, LTG92]. 

In the context of Monte Carlo ray tracing many approaches have been proposed 

for screen space interpolation [Guo98], [WDP99, WDG02, BWG03]. The goal of 

these methods was to display an approximate solution quickly, possibly at inter

active frame rates. Object space interpolation has also been used for the purpose 

of interactive previewing [SS00, TPWG02]. Sparse sampling and interpolation for 

high quality rendering was used in [BT99] and [WRC88]. The approach of Bala et 

al. [BT99] is suitable only for deterministic ray tracing. Ward et al. [WRC88] used 

interpolation only for diffuse surfaces. [KGPB08] extended this work to support 

caching and interpolation of the directional incoming radiance on glossy surfaces. 
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3.3.3.1 Spherical Function Representation 

A suitable representation of functions on a (hemi)sphere is necessary for incoming 

radiance caching. Piecewise constant representation [SHS98, CLS97, TMS04b] is 

simple but prone to aliasing and usually very memory intensive. 

Wavelets Wavelets are one popular solution, however, unless higher order wavelets 

are used, even wavelet representation [PB96, SGCH94, LF96], [SSG∗00, SS95] does 

not remove the aliasing problems. But with higher order wavelets the mathematics 

becomes complicated and hence discourages their use. 

Spherical Harmonics Spherical Harmonics [SAWG91], [SDS95], [CMS87, WAT92, 

RH02, Ram02, KSS02, SKS02, SHHS03] removed the aliasing problem and are 

efficient for the representation of low-frequency functions. However, the repre

sentation of sharp functions required a large number of coefficients and ringing 

artifacts could appear. Hemispherical harmonics [GKPB04] are better suited for 

representing functions on a hemisphere. Basis functions very similar to spherical 

harmonics are Zernike polynomials [WC92], [KDS96] and hemispherical harmonics 

of Makhotkin [Mak96]. 

3.3.4 Ambient Occlusion 

Ambient occlusion is a heuristic approximation to global illumination now in com

mon practical use. For a point being shaded, it is defined as the hemispherical 
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integral of either the visibility function or some suitable function of the distance 

to the nearest surface in each direction. The model nicely reproduces soft dark 

corners, an important feature of “real” global illumination solutions. Kontkanen 

and Laine [KL05] and Malmer et al. [MAH07] described techniques for rendering 

ambient occlusion to the surroundings of moving, rigid objects. Although ambient 

occlusion is a popular technique, it is less interesting in that it doesn’t respect the 

rendering equation. 

3.3.5 Implicit Visibility 

Several new papers explore the usage of Implicit Visibility for global illumination 

solutions. In [DKTS07] they tackled the visibility problem by implicitly evaluating 

mutual visibility while constructing a hierarchical link structure between scene 

elements. However, their link structure did not scale well with the number of 

patches in the scene, and was complicated to maintain with moving geometry. 

A more interesting approach to implicit visibility was presented by Dachsbacher 

et al. [DSDD07] as antiradiance, which reformulates the rendering equation in 

such a way that requires the consideration of both radiance and antiradiance, see 

Figure 3.7, but enabled the treatment of visibility in an implicit manner. Simi

lar approaches such as “negative light” have been used to allow for incremental 

radiosity updates, where it compensates for the different visibility configuration 

between two frames [BF89, PSV90]. Shadow photons [JC95] are also related to 

the idea of negative light. However, visibility computation was still required. In 
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particular, methods for the efficient update of global illumination [Sha97, DS97] 

required searching for regions that need recomputation of visibility. The antiradi

ance reformulation avoids this search and does not require any explicit visibility 

computation. Bunnel [Bun05] used “negative light” to approximate ambient oc

clusion and simulated the effect of inter-reflection, but the negative light was not 

directional, and this heuristic did not respect the rendering equation. Ren et al. 

[RWS∗06] proposed a different reformulation of visibility using the exponentiation 

of spherical harmonics in the context of soft shadows. They, however, still needed 

to determine the occluders between an object and the light and do not treat global 

illumination. 

The work most related to antiradiance is by Pellegrini [Pel99] who also derived a 

new rendering equation where explicit visibility is avoided, but his work is purely 

theoretical. Antiradiance used similar ideas where negative light is transmitted 

through each surface to compensate for the lack of occlusion treatment. 

A number of solutions for dynamic global illumination performed partial com

putations and used caching or reprojection of results from previous frames. An ex

ample is the Shading Cache [TPWG02]; this approach cached samples from a path 

tracer and used graphics hardware for interpolation. However, these approaches 

still required visibility to compute the sparse samples. 

Since antiradiance removed occlusion testing, it is an inherently O(n2) algo

rithm in the number of patches. Thus it employed hierarchical radiosity methods 

[Sil95, SAG94], to reduce computational complexity. These approaches required 

sophisticated data structures and global random-access visibility computations for 
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Figure 3.7: (a) Operator formalization of the rendering equation. (b) Reformula
tion using unoccluded transport, creating antiradiance to compensate for extrane
ous transport. Image credit: [DSDD07]. 

form-factors. Extensions to this method stored directional radiance using wavelets 

[SSG∗00] or spherical harmonics [SDS95]. In contrast, antiradiance stored the 

directional information of “negative light,” thus avoiding visibility computation. 

3.4 Volumetric Techniques 

Eikonal rendering, proposed by Ihrke et al. [IZT∗07], as opposed to most ray 

shooting based methods, simulated the propagation of a wavefront though volu

metric scene geometry. This approach enabled them to display realistic refractive 
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Figure 3.8: Eikonal adaptive wavefront propagation. Image credit: [IZT∗07]. 

objects with complex material properties, such as an arbitrarily varying refractive 

index, inhomogeneous attenuation, as well as spatially-varying anisotropic scatter

ing and reflectance properties. Through the wavefront propagation based on the 

Eikonal equation, they deposit illumination data in a refractive index volume, as 

seen in Figure 3.8, which once filled can be efficiently displayed using a fast ray-

caster. Though rather unique, the drawback of this approach is that the wavefront 

propagation takes a few seconds. Thus, lighting changes cannot be interactively 

displayed. 
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Another paper, Interactive Relighting of Dynamic Refractive Objects by Sun et 

al. [SZS∗08], shared several aspects in common with the Eikonal renderer, with 

the notable exception of Eikonal wavefront propagation. Though not advertised 

as such, [SZS∗08] is essentially a very well parallelized photon mapper, except 

instead of depositing radiance values in a balanced KD-tree, radiance is stored in 

a volumetric texture much as in the Eikonal approach, which, similarly, can then 

be visualized extremely efficiently with ray-casting. [SZS∗08] further extended the 

flexibility of their approach by performing fast object voxelization of triangulated 

geometry, allowing for a greater variety of inputs. 

[SZS∗08] deserves special mention because it embodies a concept described in 

[LD08] known as “time to image.” This is a notion in which frames per second is 

deemphasized, and the total time to construct a solution, or “image,” is considered 

more important. This is significant when one considers that this implies that 

[SZS∗08] performed no precomputation, and that its entire rendering pipeline, see 

Figure 3.9, was fully evaluated every frame. This means that their implementation 

implicitly handled a dynamic camera, dynamic geometry, and dynamic lighting. 

3.5 Light Propagation Volumes 

Originally developed for CryTek’s CryEngine 3, and published as Cascaded Light 

Propagation Volumes by Kaplanyan et al. [KD10], light propagation volumes is a 

real-time global illumination algorithm inspired by the Discrete Ordinates Method, 

and lattice based diffusion methods of light transport. 
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Figure 3.9: The rendering pipeline from [SZS∗08]. 

(a) (b) (c)

Figure 3.10: (a) Each cell (voxel) of the LPV stores the directional light intensity 
that is propagated to its axial neighbors; (b) incident flux is computed for each 
face of the destination voxel; (c) to account for occlusion a separate “geometry 
volume” is used, offset by half from the voxel centers. Image credit: [KD10]. 

After an initial radiance injection phase using Dachsbacher’s reflective shadow 

maps [DS05] into a volumetric texture referred to as the Light Propagation Volume 

(LPV), the light is then iteratively transferred (propagated) to its neighbors. Ad

ditionally, a Geometry Volume is used to prevent light from leaking through walls. 

In the cascaded version of the algorithm, a set of nested grids is used to improve 

performance and lower memory consumption. 

Notably, light is stored as 2 band spherical harmonics, and during propagation 
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the flux incident to each of the neighbor cell’s faces is computed, next the incident 

flux of each cell is converted into outgoing intensity. Conceptually, we can con

sider this process as a series of VPLs, each facing one of the faces of the cell and 

emitting flux equal to that of the face. These per-face VPLs are then accumulated 

into a single VPL and stored back into the light propagation volume as spherical 

harmonics, see Figure 3.10. After several iterations, the light propagation volume 

contains an approximation of the diffuse lighting in the scene. During rendering, 

the incident radiance can be sampled from the trilinearly interpolated spherical 

harmonic functions stored in the light propagation volume. 

3.6 Voxel Cone Tracing 

Voxel cone tracing as introduced in Indirect Illumination using Voxel Cone Tracing 

by Crassin et al. in [CNS∗11], builds a sparse voxel octree which stores a filtered 

representation of the scene. The voxels store many components, the diffuse color, 

and opacity, in addition to the light direction and intensity stored as an isotropic 

Gaussian lobe. 

As the voxel cone tracing technique as presented in [CNS∗11] employs an oc

tree structure and still attempts to exploit hardware based quadrilinear filtering, 

it’s octree nodes, or “bricks,” must store an extra layer of redundant information 

which must be transferred to neighboring bricks, which incurs significant cost and 

complexity. 

However, once the filtered sparse voxel octree is constructed, it provides an 
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Figure 3.11: Illustration of the sampling scheme employed by voxel cone tracing, 
the cone radius at a sample point indicates the depth in the octree to sample from. 
Image credit: [CNS∗11] 
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excellent structure from which to compute global illumination. In a deferred ren

dering context, for each pixel, a small set of cones approximating a BRDF is traced 

within the structure to gather incident radiance. As the cone expands the sam

pling rate decreases and samples are taken from higher levels of the filtered octree, 

see Figure 3.11. This fact makes voxel cone tracing extremely efficient, while the 

filtered voxel information allows the cone based sampling to rapidly approximate 

the contribution from a large amount of geometry. Varying the cone aperture and 

distribution allows voxel cone tracing to approximate different BRDFs, for exam

ple, a uniformly distributed set of wide cones allows for the approximation of a 

diffuse BRDF, while a single narrow cone traced in the direction of reflection about 

the normal can provide the specular component of a glossy BRDF. 

3.7 Voxelization 

Approaches to voxelization take many forms, and must balance several properties. 

One of the earlier approaches to utilize the graphics pipeline, [FC00] constructed a 

surface voxelization via rasterizing the geometry for each voxel slice while clamping 

the viewport to each slice. [LFWK05] introduced “depth peeling” which reduced 

the number of rendering passes by capturing 1-level of surface depth complexity per 

render pass. These approaches tended to miss voxels, and often must be applied 

once along each orthogonal plane to capture missed geometry. [DCB∗04] utilized 

binary encoding to store voxel occupancy in separate bits of multi-channel render 

targets, allowing them to process multiple voxel slices in a single rendering pass. 
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This approach is sometimes referred to as a slicemap [ED06]. 

Approaches exist, such as conservative voxelization by [ZCEP07], which employ 

the conservative rasterization technique of [HAMO05]. This approach amplified 

single triangles to potentially nine triangles by expanding triangle vertices to pixel 

sized squares and outputting the convex hull of the resultant geometry. [SEA08] 

improved on this by ensuring that fewer triangles would be generated during tri

angle expansion, while [HHW09] found it was most effective to simply expand 

triangles by half the diagonal of a pixel and discard extra fragments in the pixel 

shader. 

Some voxelization techniques also target solid voxelization; generally, these 

must restrict their input geometry to closed, watertight models, and classify voxels 

as either interior or exterior. As surface geometry is voxelized, entire columns of 

voxels are set, final classification is based on the count, or parity, of the voxel. 

An odd value indicates a voxel as interior, while even indicates exterior. In GPU 

hardware this corresponds to applying a logical XOR which is supported by the 

frame buffer. [FC00] presented such an approach using slice-wise rendering, while 

[ED08] developed a high-performance single pass approach. 

Most recently, [CG12] have released an approach that operates similarly to the 

fragment-parallel component of our scheme, discussed in section 4.1.2, exploiting 

the recently exposed ability to perform random texture writes in OpenGL using 

the image API. By constructing an orthographic projection matrix per-triangle in 

the geometry shader, they were able to rely on the OpenGL rasterizer to voxelize 

their geometry. 
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More recently, approaches have been developed which take an explicitly compu

tational approach to voxelization without utilizing fixed function hardware. [SS10] 

implemented a triangle parallel voxelization approach in CUDA, which achieved 

accurate 6- and 26-separating binary voxelization into a sparse hierarchical octree. 

Pantaleoni’s VoxelPipe [Pan11] implementation took a similar approach while fully 

supporting a variety of render targets and robust blending support. Both ap

proaches also employed a tile-based voxelization. 
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Chapter 4: Voxelization
 

Figure 4.1: The XYZ RGB Asian Dragon voxelized at 1283, 2563, and 5123 reso
lutions. 

In this chapter we cover our work on voxelization. Related work in voxelization 

can be seen in Section 3.7. In Section 4.1 we discuss first our triangle-parallel and 

fragment-parallel approaches and how we combine them for our hybrid implemen

tation. Additionally, we discuss several Voxel-List construction methods, and a 

method to correctly interpolate attributes using barycentric coordinates. This is 

followed by a look at the comparative performance of our method, Section 4.2, and 

finally a discussion of our findings with respect to voxelization, Section 4.3, 

Our voxelization approach largely follows the techniques described in [RB13], 

with modifications and extensions suitable to the application of Global Illumina

tion. Primarily these extensions involve methods to store appropriate attributes 

at voxel locations (see Chapter 5), and modifications to generate active-voxel-lists 
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in order to accelerate mipmapping. The mipmapping process is covered in greater 

detail in Section 5.3. 

[RB13] proposed a hybrid voxelization pipeline which adapted previous com

putational approaches to the context of the graphics pipeline, and divided the 

voxelization workload between Triangle-Parallel and Fragment-Parallel techniques. 

4.1 Voxelization 

Whereas previous techniques relied exclusively on the graphics pipeline, or rejected 

it completely for a computational approach, we demonstrate how to find a middle 

ground to apply the techniques of computational voxelization approaches within 

the framework of the graphics pipeline. First, however, we must introduce both 

the triangle-parallel (section 4.1.1) and fragment-parallel (section 4.1.2) techniques 

which make up the primary components of our hybrid approach (section 4.1.3). 

Both techniques employ the same 3D extension of the [AM05] triangle/box overlap 

tests found in [SS10] and [Pan11]. These approaches differ from each other primar

ily in their factorization of the computational overlap testing, and the methods in 

which they try to achieve optimal parallelism. 

Triangle/Voxel Overlap We can consider the exercise of finding an intersec

tion between a triangle T (with vertices v0, v1, v2 and edges ei = v(i+1)%3 − vi) 

and a voxel p to be fundamentally an exercise in first reducing the number of tri

angle voxel pairs to consider, and secondly, an effort in reducing the computation 
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required to confirm an intersection between a triangle and a voxel. Considering 

initially the potential intersection between a triangle and the set of all voxels, 

conceptually, the process is executed in the following order. 

1. Reduce the set of potential voxel intersections to only those that overlap the 

axis-aligned bounding volume b of the triangle. 

2. Iterate over this reduced set of voxels (from bmin to bmax) and discard any 

that do not intersect the triangle’s plane. 

3. If the triangle plane divides the voxels, test all three of its 2D planar projec  
T XY ,T YZ,T ZXtions to confirm overlap. 

The steps above rely heavily on point to plane, and point to line distance calcula

tions. For instance, the plane overlap test relies on computing the signed distance 

to the plane from two points on opposite ends of the voxel, let us call these points 

pmin and pmax. If these distances have opposite signs, i.e. pmin and pmax are on 

opposite sides of the plane, this indicates overlap. The selection of pmin and pmax 

determines the separability of the resultant voxelization, see figure 4.2.   
T XY ,T YZ,T ZXSimilarly, when testing the triangle projections against their   

pXY , pYZ, pZXrespective voxel projections , we use the projected inward facing 

, nYZ, nZXedge normals (nXY for i = 0, 1, 2) to select the “most interior” point on ei ei ei 

, eYZ, eZXthe box for each edge (eXY for i = 0, 1, 2), and if all projected edge to i i i 

interior point distances are positive, this indicates overlap within that projection, 

see figure 4.3. 
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Figure 4.2: pmin and pmax for 26-separable voxelization on left, and for 6-separable 
voxelization on right. Note that for 6-separable voxelization we are actually testing 
for intersection of the diamond shape inscribed inside the voxel as opposed to the 
entire voxel in the 26-separable case. 
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Figure 4.3: pei for 26-separable voxelization on the left, and for 6-separable vox
elization on the right. Similar to the plane-overlap test, the 6-separable voxeliza
tion is actually testing against the diamond inscribed inside the voxel’s planar 
projection. 
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Factorization As described in [SS10] and [Sch12], the points pmin and pmax and 

pXY, pYZ, pZX (for i = 0, 1, 2) are determined with the aid of an offset vector, ei ei ei 

known as a critical point, which is determined by the relevant normal. However, if 

we take the distance calculations and refactor them such that minimal computation 

occurs while iterating over the voxels, i.e. factor out all computations not directly 

dependent on the voxel coordinates of p, we can actually simplify the expressions 

, pYZto the point that the critical point and the points pmin and pmax and pXY ,ei ei 

pZX 
ei 

for i = 0, 1, 2 need never be determined. Instead we substitute per-triangle 

, dYZ, dZXvariables dmin, dmax and dXY (for i = 0, 1, 2), which represent the factored ei ei ei 

out components of the distance calculation not dependent on the voxel coordinates. 

Optimization There are several ways in which we can optimize this process with 

an eye towards reducing the amount of computation that occurs in the innermost 

loops of our bounding box traversal. 

1. The first involves pre-computing all per-triangle variables, which includes the 

,nYZ, nZXtriangle normal n, the nine planar projected edge normals nXY 
ei 

(forei ei 

, dYZ, dZXi = 0, 1, 2), and the eleven factored variables dXY (for i = 0, 1, 2),ei ei ei 

dmin, and dmax. 

2. Determine the dominant normal direction, and use this to select the orthog

onal plane of maximal projection (XY, YZ, or ZX), then iterate over the 

component axes of this plane first, the remaining axis we shall refer to as the 

depth-axis. 
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3. Test the 2D projected overlap with the orthogonal plane of maximal projec

tion first. 

4. Replace the plane overlap test with an intersection test along the depth-axis 

test to determine the minimal necessary range to iterate over (rather than 

the entire range of the bounding box along the depth-axis). 

5. Test the remaining two planar projections for overlap. 

Should all of these tests succeed, we can confirm that triangle T intersects voxel 

p. Pseudocode for both conservative and thin voxelization routines is provided in 

Figures 4.4 and 4.5, respectively. For more detail on the triangle/box overlap test, 

the reader is referred to [SS10, Sch12] and [Pan11]. 

4.1.1 Triangle-parallel voxelization 

The most natural approach to voxelization of an input mesh is to parallelize on 

the input geometry (i.e. the triangles). [Sch12] implemented such an approach in 

a Direct3D Compute shader as a single pass. [SS10, Pan11] implemented a multi

pass approach to improve parallelism. [SS10] improved coherence by specializing 

the triangle-box intersection code into nine different voxel-dependent cases; 1D 

bounding boxes along each axis; 2D bounding boxes in each coordinate plane; 

and 3D bounding boxes for three dominant normal directions. Unfortunately this 

requires a 2-pass approach, and while it results in high thread coherence (since 

kernels operate exclusively on similar triangles), it is quite complex, and exceeds 
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1: function conservativeVoxelize(v0, v1, v2, bmin, bmax, unswizzle) 
2: ei ← v(i+1)mod3 − vi 

3: n ← cross (e0, e1) 
4: nXY ← sign (nz) · (−ei,y, ei,x)T 

ei 

5: nYZ ← sign (nx) · (−ei,z, ei,y)T 
ei 

6: nZX ← sign (ny) · (−ei,x, ei,z)T 
ei ( b ( ) ( ) 

dXY nXY 0, nXY 0, nXY7: ← − , vi,xy + max + maxei ei ei,x ei ,y( b ( ) ( ) 
dYZ nYZ 0, nYZ 0, nYZ8: ← − , vi,yz + max + maxei ei ei,x ei,y( b ( ) ( ) 
dZX nZX 0, nZX 0, nZX9: ← − , vi,zx + max + maxei ei ei,x ei,y

10: n ← sign (nz) · n // ensures zmin < zmax 

11: dmin ← (n, v0) − max(0, nx) − max(0, ny) 
12: dmax ← (n, v0) − min(0, nx) − min(0, ny) 
13: for px ← bmin,x, . . . , bmax,x do 
14: for py ← bmin,y, . . . ,(( bb max,y do ) 

nXY + dXY15: if ∀2 ≥ 0 theni=0 ei 
, pxy e�i   

16: zmin ← max bmin,z, (−(nxy, pxy) + dmin) 1 
nzl ) 

17: zmax ← min bmax,z, (−(nxy, pxy) + dmax) 1 
nz 

18: for pz ← zmin, . . . , zmax do(( b ( b ) 
nYZ + dYZ nZX + dZX19: if ∀2 

i=0 ei 
, pxy ei 

≥ 0 ∧ ei 
, pxy ei 

≥ 0 then 
20: V [unswizzle · p] ← true 
21: end function 

Figure 4.4: Pseudocode for a conservative (26-separable) computational voxeliza
tion, this assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, 
while unswizzle represents a permutation matrix used to get the unswizzled voxel 
location. 
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1: function thinVoxelize( b b )v v v , unswizzle0 1 2 min, , , , max

      
XY XYn n,

YZ YZn nb
+ 0 5 max·. 

  

2: ← −e v v( +1) mod 3i ii

3: cross ( )←n e e0 1, 
TXY4: sign ( ) ( )← −n n e e· ,z i,y i,x
TYZ5: sign ( ) ( )← −n n e e· ,x i,z i,y

    

ei
 

ei
 (
ei,x ei,y

+ 0.5 · max ei ,x
((

nZX6: ei     ))) 

dXY 
ei 

← sign (ny) · (−ei,x, ei,z)T 

nXY 
ei 

, 0.5 − vi,xy 
bb

n ← sign (nz) · n // ensures zmin < zmax 

(((7: + 0.5 · max←
dYZ 

ei 
8: , 0.5 − vi,yz← ,nYZ 

ei 

    
    dZX 

ei 
nZX 

ei,x

ei,y
nZX 

ei,y9: , 0.5 − vi,zx← ,nZX 
ei

10: 
11: dcen ← (n, v0) − 0.5 · nx − 0.5 · ny
12: for px ← bmin,x, . . . , bmax,x do 
13: 
14: 
15: 
16: 

bfor py ← bmin,y, . . . , bmax,y do((
nXYif ∀2 

i=0 ei 

zint ← (−(nxy, pxy) + dcen) 1 
nz 

zmin ← max (bmin,z, lzintd) 

, pxy + dXY 
ei

)
≥ 0 then 

17: zmax ← min (bmax,z, Izintl) 
18: 
19: 
20: 
21: end function 

bfor pz ← zmin, . . . , zmax do((
nYZif ∀2 

i=0 ei 

V [unswizzle · p] ← true 
, pxy + dYZ 

ei

(
nZX 

ei 
, pxy 

b 
+ dZX 

ei 
≥ 0

)
then≥ 0 ∧

Figure 4.5: Pseudocode for a thin (6-separable) computational voxelization, this as
sumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, while unswizzle 
represents a permutation matrix used to get the unswizzled voxel location. 
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the number of available image units commonly available. However, we can reduce 

this by a factor of three, allowing all 1D, 2D, and 3D cases to be treated the same 

by performing a simple transformation discussed in section 4.1.2. 

Input geometry is first transformed into “voxel-space,” that is the space rang

ing from (0, 0, 0)T to (Vx, Vy, Vz)T, in the vertex shader. Second, an intersection 

routine implemented in the geometry shader, as described in section 4.1, performs 

the voxelization, the performance of which can be seen in figure 4.6. It is read

ily apparent that a naïve triangle-parallel approach only performs well in scenes 

that exhibit certain characteristics, for instance, the evenly tessellated XYZ RGB 

Dragon and Stanford Bunny models, both scenes that exhibit even and regular 

triangulation. Any scene that contains large triangles (such as might be found on 

a wall) like the Crytek Sponza Atrium, the Conference Room, or even, sadistically, 

a single large scene-spanning triangle, the naïve triangle-parallel approach has no 

mechanism by which to balance the workload, and the voxelization must wait while 

individual threads work alone to voxelize large triangles. 
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Figure 4.6: Performance of a naïve triangle-parallel voxelization. Exhibits poor 
performance on scenes containing large polygons. Performance decreases pre
dictably with increase in voxel resolution. 

4.1.2 Fragment-parallel voxelization 

This observation of poor work-balance in unevenly tessellated scenes is what led 

Schwarz and Pantaleoni to introduce complex tile-assignment and sorting stages 

to their voxelization pipelines. Our fragment-parallel voxelization is based on the 

observation that much of our triangle-intersection routine can simply be moved 

to the fragment shader, providing the opportunity for vastly more parallelism. 

Thus, we exploit the fragment stage of the OpenGL pipeline as a sort of ad-hoc 

single-level of dynamic parallelism. There are several implementation particulars 
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required to ensure a gap-free voxelization, which will be discussed in a later section. 

The performance results of our single-pass fragment-parallel implementation can 

be observed in figure 4.7, and most noteworthy is the fact that it performs very 

well on the exact scenes that the triangle-parallel voxelization struggled with, and 

most poorly on scenes with large amounts of fine detailed geometry (XYZ RGB 

Dragon & Hairball). 

The fragment-parallel implementation is far more unique and must be adapted 

to the pipeline in order to produce a correct voxelization. At present, only [CG12] 

describe a similar approach. Our utilization of the fragment stage allows us to ben

efit from the rasterization and interpolation acceleration provided by the graphics 

hardware. However, there are several issues we must concern ourselves with when 

endeavoring to produce a “gap-free” voxelization, (1) gaps within triangles caused 

by an overly oblique “camera” angle, and (2) gaps between triangles caused by 

OpenGL’s rasterization rules. 

, nYZ, nZX, dXY, dYZ, dZXAs in the triangle-parallel approach values n, nXY (forei ei ei ei ei ei 

i = 0, 1, 2), dmin, and dmax are precomputed. However, in this implementation they 

are calculated in the geometry shader, and passed as flat non-varying attributes 

to the fragment shader. Essentially, we allow the rasterizer to take over for iterating 

over the axes of the dominant planar projection, leaving the fragment shader to 

confirm overlap with the dominant plane, calculate the depth intersection range 

according to the desired separability rules, and confirm the remaining two planar 

projections. In the pseudocode in figures 4.4 and 4.5, the portion of code that 

would be moved into the fragment shaders goes from line 15 to line 20 in figure 
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4.4, and from line 14 to line 20 in figure 4.5.
 

Figure 4.7: Performance of fragment-parallel voxelization. This exhibits poor-
performance in scenes with large numbers of small triangles. Performance degra
dation is exacerbated as the ratio of voxel-size to triangle-size increases. 
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Figure 4.8: Naïve rasterization on input geometry can lead to gaps in the voxeliza
tion. This can be solved in two ways, the center image demonstrates swizzling the 
vertices of the input geometry, while the image on the right demonstrates changing 
the projection matrix. 

Gap-Free Triangles We can solve the first problem, illustrated in figure 4.8, 

in one of two ways, both of which rely on determining the dominant normal di

rection of the triangle. The first approach relies on constructing an orthographic 

projection matrix per-triangle, which views the triangle against the axis of its max

imum projection as determined by the dominant normal direction. Alternately, we 

can change the input geometry, again based on the dominant normal direction, 

such that the XY plane is always the axis of maximum projection. This can be 

accomplished by a simple hardware supported vector swizzle described below 

⎧ 

vi,yzx nx dominant 
⎪⎪⎪⎪⎪⎪⎪⎪2 ⎨ 

∀i=0vi,xyz = vi,zxy ny dominant (4.1)⎪⎪⎪⎪⎪⎪⎪⎪⎩vi,xyz nz dominant 
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However, we must be sure to “unswizzle” when storing in the destination tex

ture. Additionally, a similar triangle swizzling approach can be used to reduce the 

number of cases taken in the [SS10] approach. With triangle swizzling, the num

ber of cases drops from 9 to 3, one for each of the 1D, 2D, and 3D cases. Figure 

4.9 depicts the selection of the largest triangle projection based on the dominant 

normal direction. 

x
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z

z

y

x

y

x

z

|nx|

|nz|

x

y

z

|ny|

pre-swizzle post-swizzle

n

v2
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v1

v1

v0

v2

Figure 4.9: The largest component of the normal n of the original triangle deter
mines the plane of maximal projection (XY, YZ, or ZX) and the corresponding 
swizzle operation to perform. 

Conservative Rasterization The second problem can be solved with conserva

tive rasterization. Conservative rasterization ensures that every pixel that touches 

a triangle is rasterized, which is counter to how the hardware rasterizer works. 

There are several approaches to overcome this, which generally involve “dilat

ing” the input triangle. [HAMO05] dilated input triangles by expanding triangle 

vertices into pixel sized squares and computing the convex hull of the resultant 

geometry. Tessellation of this shape can be computed in the geometry shader. 
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Alternately, Hasselgren also proposed computing the bounding triangle of the di

lated geometry from the previous approach and simply discarding in a fragment 

shader all fragments outside of the AABB. [HHW09] proposed a similar approach, 

computing the dilated triangle T ' by constructing a triangle of intersecting lines 

parallel to the sides of the original triangle T at a distance of l, where l is half the 

length of the pixel diagonal, see figure 4.10 for examples of these techniques. 

v0̀

`v1

v2̀

v0̀

`v1

v2̀

v0
v1

v2

Figure 4.10: Various conservative rasterization techniques required in order to 
produce a “gap-free” voxelization. The first two images are from [HAMO05], the 
leftmost image shows the approach of expanding triangle vertices to size of pixel, 
and tessellating the resultant convex-hull. The middle image simply creates the 
minimal triangle to encompass the expanded vertices, and relies on clipping to 
occur later in the pipeline. The rightmost approach is from [HHW09], and simply 
expands the triangle by half the length of the pixel diagonal and also relies on 
clipping to remove unwanted pixels. 

With the Hertel approach the dilated vertices vi 
' of T ' can be easily computed 

as 
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ei−1 eiv ' i = vi + l + . (4.2)
ei−1 · nei ei · nei−1 

In our case working on a 2D triangle projection in a premultiplied voxel space 

l will always be 
√

2/2. 

It should be noted that conservative rasterization has the potential to produce 

unnecessary overhead in the form of fragment threads that are ultimately rejected 

in the final voxelization intersection test. As triangles get smaller and l remains 

constant, the size of the dilated triangle T ' to the size of the original triangle T 

causes the ratio area(T ) 
area(T �) to become smaller. This ratio can be used to approximate 

an upper bound on the expected efficiency of per-triangle fragment thread utiliza

tion. This goes part of the way to explaining the fragment-parallel technique’s 

poor performance in highly tessellated scenes with many small triangles, but is 

actually exacerbated further by poor quad utilization for small triangles. Since 

texture derivatives require neighbor information, even if only one pixel of a quad 

is covered, the entire quad is launched. This means that triangles smaller than a 

voxel will utilize only 25% of the threads allocated to them before triangle dilation 

is taken into account. After triangle dilation, thread utilization can be significantly 

worse, see figure 4.11, and in scenes with millions of sub-voxel sized triangles, can 

lead to massive oversubscription and poor performance. 

Additionally, it was our observation that voxelization methods that relied purely 

on raster-based conservative voxelization methods tended to be overly conservative 
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¯Figure 4.11: Sub-voxel sized triangle exhibiting thread utilization of only 8.3% 
after triangle dilation, note, that this can actually get much worse depending on 
the triangle configuration. 

along their edges where clipping against the AABB couldn’t help them, resulting 

in false positives, see figure 4.12. Since our approach maintains a computational 

intersection test inside the fragment shader, these voxels are still culled. 

Figure 4.12: Thin (6-separable) voxelization of the Conference Room scene illus
trating false positives (in red) resulting from a naïve conservative-rasterization 
based voxelization. 
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Figure 4.13: Comparison of the relative performance of Triangle-parallel and 
Fragment-parallel techniques. Note, where one technique performs poorly, the 
other performs well. 
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4.1.3 Hybrid Voxelization 

Comparing the performance of both single-pass techniques side-by-side, as illus

trated in figure 4.13, the inversion of strengths and weaknesses becomes even more 

apparent. By using the fragment shader to increase the available parallelism, the 

worst-case scenario for the triangle-parallel approach becomes the best case for 

the fragment-parallel case. Conversely, the best-case for the fragment-parallel ap

proach is the worst case for the triangle-parallel approach. Thus, we logically arrive 

at a hybrid approach, one in which large triangles are divided into fragment-threads 

using the fragment-parallel technique, and small triangles are voxelized using the 

triangle-parallel technique, thus avoiding poor thread utilization and oversubscrip

tion. 

Triangle Classification
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Figure 4.14: A simple classification routine run before the voxelization stage allows 
the creation of a hybrid voxelization pipeline and utilizes the optimal voxelization 
approach according to per-triangle characteristics. 

We take care to preserve coherent execution among our shader threads with the 

introduction of a classification stage to our pipeline prior to voxelization, see figure 

4.14, which outputs corresponding index buffers according to each triangle’s classi
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Figure 4.15: Our final hybrid voxelization implementation mitigates the cost pro
cessing the input geometry twice by immediately voxelizing input triangles classi
fied as “small” and deferring only those triangles considered to be “large.” 

fication. These classified index buffers are then used to voxelize the corresponding 

geometry using the appropriate technique. 

Triangle Selection Heuristic The crux of the hybrid-voxelization approach 

lies in the heuristic used for determining whether a triangle is most suitable for 

voxelization using a triangle-parallel approach or a fragment-parallel approach. 

The [SS10] approach is dependent on voxel extents of triangle bounding boxes, 

however, we have already determined that the fragment-parallel approach will 

handle all large triangles, and the triangle-parallel approach will handle all small 

triangles. 

The heuristic for the selection of a cutoff value can be approached in many dif

ferent ways, for instance, the size of the dilated triangle area (T ') most accurately 

represent the number of potential voxel intersections to be evaluated in the frag

ment stage, but is not a fair representation of the amount of work required in the 
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triangle-parallel stage should the triangle be classified as small. Furthermore, the 

dilated triangle has a minimum size, which must be considered as undilated tri

angles approach zero area. The 3D voxel-extents provide a good indication of the 

amount of iteration required to voxelize a triangle in the geometry stage, however, 

since the depth-range is calculated, the 2D-projected voxel-extents provide a closer 

representation of the actual work performed. Additionally, we could consider the 

ratio of area(T ) 
area(T �) , which, as it varies from 0 to 1, indicates very small to very large 

triangles, respectively. 

In our experiments, we found that simply considering the 2D projected area 

of the triangle T worked best, and for most scenes, a cutoff value of just a few 

voxel units squared provided a good starting cutoff value for triangle classification. 

In figure 4.16 we can see the full range of voxelization performance vary from 

that of the fragment-parallel approach at a cutoff of zero, to the performance 

of the triangle-parallel approach once the cutoff is large enough to encompass 

all triangles. Note that figure 4.16 represents an unreasonable range of cutoff 

values; this is meant to illustrate the performance characteristics as the cutoff value 

changes. Generally, there is a fairly large range of cutoff values corresponding to 

near-optimal performance. 
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Figure 4.16: Initially at zero, all triangles are classified as “large” and therefore 
voxelized by the fragment-parallel shader. As the cutoff value (measured in voxel 
area) increases, triangles are classified and assigned to either the triangle-parallel 
or fragment-parallel approaches. As the cutoff continues to increase, performance 
exhibits a stair-step pattern as triangles are reclassified. Eventually all triangles 
are classified as “small” and performance reverts to that of the triangle-parallel 
approach. 

We are, however, most interested in the cutoff value that will provide the 

minimal voxelization time, and these values tend to occur at much lower values. 

Figure 4.17 shows only the earlier range of cutoff values. Examination of the data 

confirms that for most inputs a cutoff value of just a few voxels squared provides 

for optimal voxelization timing. It is conceivable that a bracketing search could 

determine and adjust this value automatically [PTVF07]. 
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Figure 4.17: Logarithmic performance graph of the hybrid voxelization technique 
displaying a lower range of cutoff values such that the optimal cutoff can be clearly 
discerned. 

Optimization In order to avoid requiring separate output buffers for all input 

attributes, we output only index buffers which are then used to render only the 

appropriate subset of the geometry with the voxelization method as determined by 

the classifier. On many scenes this allowed us to achieve improved performance over 

either the fragment-parallel or the triangle-parallel approach alone. However, when 

we examine the performance of a scene ideally suited to the triangle-parallel ap

proach like the XYZ RGB Dragon, we observe that the best performance that can 

be achieved with our triangle-classifier is approximately twice that of the triangle-

parallel approach alone. This can be explained by the amount of work it takes to 
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process the 7 million triangles in the scene. Each triangle is extremely small (gen

erally less than the size of a voxel) and takes relatively little work to voxelize, and 

similarly little work to classify. In this case, run-time is dominated by the overhead 

of creating threads, rather than the work done in each thread, and with our cur

rent approach we have doubled the number of threads to be created. Fortunately, 

we can exploit the fact that in our classification, we employ the triangle-parallel 

approach only for small triangles. Combined with the fact that the number of 

small triangles in a scene almost always dominates the number of large triangles, 

we can dramatically decrease the overhead of our hybrid voxelization pipeline. 

As illustrated in figure 4.15, by moving the triangle-parallel voxelization into the 

classification shader and deferring only the larger triangles to be voxelized by the 

fragment shader, we effectively reduce a two-pass approach to a just slightly over 

one-pass approach, meaning, that while all triangles are processed at least once, 

only a few are processed twice. Furthermore, since the overhead of classification 

and voxelization of small triangles is so low, this makes our hybrid approach com

petitive on all scenes, even those tailored for a triangle-parallel approach. The 

full pipeline is shown in figure 4.18, illustrating the voxelization of the XYZ RGB 

Dragon scene. 

4.1.4 Voxel-List Construction 

Though we are primarily concerned with producing a voxelization stored in a dense 

3D texture, it can also be useful to produce a sparse “voxel-list.” Previously, it 
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Figure 4.18: Full pipeline including shader stages. Note that while there are two 
“passes” only a very small subset of the geometry, that is classified as “large,” is 
processed twice. 

would be necessary to perform a dense voxelization and then perform a reduction, 

such as HistoPyramid compaction [ZTTS06], in order to produce such a list. How

ever, with hardware support for atomic operations, this step can now be skipped. 

We can instead use an atomic counter to increment the index of an output buffer 

used to store the voxel’s coordinates. [CG12] used such a technique to generate 

their “voxel-fragment-list,” which they then used to construct a sparse hierarchi

cal octree. With such an approach, multiple elements may refer to the same voxel 

location, which are later merged in hierarchy creation. To avoid duplicate voxel 

assignments, a dense 3D r32ui texture can be employed to provide mutexes at 

each voxel location. By employing an imageAtomicCompSwap operation at the 

voxel location, we can restrict incrementing the atomic counter to a single thread 

accessing the voxel location. This can be beneficial when your voxelization in

cludes additional attribute outputs and there is not enough memory for a dense 
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3D texture for each attribute. 

The reduced memory requirements of voxel-lists must be weighed against in

creased voxelization time. The use of atomic operations directly impacts voxeliza

tion performance, particularly in situations where many threads are attempting 

to access the same voxel. We observed that the additional voxel culling provided 

by a rigorous computational intersection test helped significantly in reducing the 

number of write conflicts for the atomics to resolve. It should be noted that when 

outputting attribute buffers, that on some architectures, correct averaging of at

tribute information (colors, normals, etc.) may require emulation of (as of yet) 

unsupported atomic operations [CG12]. 

4.1.5 Attribute Interpolation 

Attribute interpolation must be handled manually in the triangle-parallel ap

proach. But as a benefit of its usage of the graphics pipeline, the fragment-parallel 

approach can exploit the fixed-function interpolation hardware provided by the ras

terizer. Since the fragment-parallel voxelization method relies on triangle dilation 

to ensure a conservative voxelization, care must be taken to correctly interpolate 

triangle attributes across the dilated triangle. To accomplish this, we calculate 

the barycentric coordinates of the dilated triangle vertices v ' i with respect to the 

undilated triangle vertices vi using signed area functions. 

area (v ' i, vi+1, vi+2)
λi (v ' i) = (4.3)area (v0, v1, v2) 
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By applying the barycentric coordinates computed at the dilated triangle ver

tices v ' i to the vertex attributes, i.e. vertex colors, normals, or texture coordinates 

ti, we can calculate corresponding dilated attributes t' i as follows 

t' = λ0 (v ' ) t0 + λ1 (v ' ) t1 + λ2 (v ' ) t2 (4.4)i i i i

By passing dilated attributes in from the geometry shader to the vertex shader 

in this manner, we ensure that attributes interpolate across the undilated region 

of the dilated triangle in the same manner as they would on the undilated triangle. 

This holds regardless of the dilation factor l applied. 

4.2 Voxelization Performance 

We tested our hybrid voxelization approach against several different models at 

various voxel resolutions, and compared the results to purely triangle-parallel and 

purely fragment-parallel implementations, as well as the data available from [SS10], 

[Pan11], and [CG12]. We included the XYZ RGB Asian Dragon as an example of 

a pathological worst case-scenario for the fragment-parallel approach, and we in

cluded a single scene-spanning triangle as a pathological worst case for the triangle-

parallel approach. All results were generated on an Intel Core i7 950 @ 3.07GHz 

with an NVIDIA GeForce GTX 480. Table 4.1 shows the performance comparison 

of the different techniques, and additionally the percentage of time spent in the 

first and second pass of the hybrid voxelization approach, see figure 4.18. Both 

Dragons, the Bunny, and the Hairball represent less than ideal conditions for our 



93 

Model Grid size 
6-separating (thin) binary voxelization 

Triangle-
parallel 

Fragment-
parallel Hybrid @voxels2 Pass 1/Pass 2 

Schwarz & 
Seidel VoxelPipe 

Crassin & 
Greene (680) 

Large Triangle 
(1 tri) 

1283 

2563 

5123 

10.62 
42.4 
169.7 

0.03 
0.06 
0.22 

0.04 @na 36.1%/63.9% 
0.07 @na 22.1%/77.9% 
0.19 @na 12.0%/88.0% 

XYZ RGB 1283 6.37 165.2 8.51 @2.0 99.9%/0.1% 11.36 21.2 
Asian Dragon 2563 7.70 165.0 8.57 @1.7 99.7%/0.3% 14.73 
(7,219,045 tris) 5123 9.80 164.6 10.3 @1.4 99.8%/0.2% 16.67 22.0 
Crytek Sponza 1283 13.4 10.65 1.11 @2.8 87.7%/12.3% 
Atrium 2563 53.2 11.13 1.80 @3.9 71.6%/28.3% 
(262,267 tris) 5123 208.7 11.87 3.68 @3.1 52.8%/47.2% 

Conference 
(331,179 tris) 

1283 

2563 

5123 

9.23 
36.04 
141.2 

11.47 
11.62 
11.94 

1.41 @0.5 68.5%/31.5% 
1.82 @1.7 69.2%/30.8% 
3.01 @0.9 52.2%/47.8% 

3.9 

59.3 

3.3 

4.3 

Stanford Bunny 
(69,666 tris) 

1283 

2563 

5123 

0.28 
0.82 
3.12 

1.58 
1.55 
1.82 

0.19 @1.8 88.1%/11.9% 
0.34 @4.5 91.6%/8.4% 
1.08 @12.7 93.0%/7.0% 

0.60 
0.89 
2.35 

Stanford Dragon 
(100,000 tris) 

1283 

2563 

5123 

0.25 
0.51 
1.61 

2.13 
2.09 
2.25 

0.26 @13.3 97.8%/2.2% 
0.52 @5.9 93.4%/6.6% 
1.25 @13.7 88.6%/11.4% 

3.44 
3.96 
4.44 

4.8 

5.0 

1.19 

1.38 

Hairball 
(2,880,000 tris) 

1283 

2563 

5123 

7.09 
13.73 
33.47 

74.8 
67.1 
68.4 

7.37 @2.3 99.89%/0.11% 
14.0 @2.4 99.94%/0.06% 
33.9 @8.0 99.97%/0.03% 

22.8 

95.0 

12.8 

18.3 

Table 4.1: Running time (in ms) for different voxelization approaches, blue indi
cates the fastest voxelization method. Voxelizations are binary and performed into 
a single component dense 3D texture. The Large Triangle cutoff is listed as “na” 
since there are no suitable triangles to be reassigned. 

approach as they do not have a large distribution of triangle sizes, yet are able to 

obtain better performance than the competing techniques in all but one instance. 

In several cases, the purely triangle-parallel approach beat the hybrid approach, 

which is understandable considering these scenes are ideally suited to the triangle-

parallel approach. It should be noted that in all such cases besides the pathological 

worst case (the Asian Dragon), the hybrid approach was within 3% of the triangle-

parallel approach, indicating the low overhead of our multi-pass approach. Despite 

its simple classification scheme, our approach provides a performance improvement 

for binary voxelization over its competitors, including [CG12] which used superior 

hardware (GTX 680). It should be noted that the cutoff values are likely to be 
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highly architecture dependent, we would expect them to change when executed on 

Nvidia’s Kepler or AMD’s Southern Islands architecture. 

4.3 Discussion of Voxelization 

We implemented a wide variety of voxelization and conservative rasterization tech

niques in our experiments. Our implementations targeted the capabilities described 

in the OpenGL 4.2 specification. Our approach relied on the ability to perform 

texture writes to arbitrary locations enabled by the image API. Our classification 

approach relied on indirect buffers to enable the asynchronous execution of the vox

elization stage. A benefit of our OpenGL implementation is that it avoids the per

formance penalty of context switching and implicit synchronization points present 

in a CUDA or OpenCL implementation. With the introduction of OpenGL 4.3, 

the triangle-parallel approach could easily be implemented in a compute shader, 

but at present our experience has been that compute shaders incur an unknown 

overhead and are significantly less efficient than existing techniques. 

Another application of our initial classification scheme, see figure 4.14, could be 

to “pre-classify” scenes. Then by maintaining two index-buffers, hybrid-voxelization 

could be employed absent the cost of classification. This would be most sensible 

when applying a non-voxel dependent triangle classifier, in scenarios where the 

orientation of the voxels may change relative to the scene geometry. 

We found that several of our results agreed with [SEA08, HHW09], that geome

try amplification of the first Hasselgren technique led to performance degradations. 
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We also found that atomic operations more greatly impacted the triangle-parallel 

approach, likely due to the fact that each triangle-parallel thread is responsible for 

more writes than each fragment-parallel thread. 

This chapter has shown how a GPU-accelerated computational surface voxeliza

tion can be achieved without resorting to CUDA or OpenCL. Our hybrid approach 

to voxelization leverages the strengths of the graphics pipeline to improve paral

lelism where it is most needed without sacrificing the quality of the voxelization. 

It exhibits superior performance to existing techniques, especially on scenes with 

non-uniform triangle distributions. 
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Chapter 5: Voxel Storage, Sampling, & Mipmapping 

Recasting the scene into a voxel format has many advantages, but also, some 

critical disadvantages, mainly high memory requirements. Dense 3D textures offer 

many advantages such as the availability of hardware for interpolation, but unfortu

nately allocate data for unused portions of the scene. Hence it is prudent to explore 

techniques for efficient sparse voxel storage. Another consideration is the format 

of the data being stored per voxel. A simple dense 5123 texture storing a RGBA 

color value per voxel takes up over 500 megabytes when stored in a low precision 

RGBA8 texture, and over 2 gigabytes in a medium precision RGBA32F texture, 

already exhausting the 1.5 gigabytes of memory available on a typical GTX 480. 

These values become 3GB and 12GB respectively for an anisotropic voxel storage 

scheme which stores 6 directional color values per voxel. If it becomes necessary 

to store additional voxel attribute data (such as diffuse and emissive color values, 

and normals) then these already prohibitive storage requirements are multiplied 

several fold over again. Also, since texture filtering hardware on the GPU is fixed 

to function with specific texture formats, we are unable to define generic voxel 

attributes in a flexible manner as we may like. Instead we must make concessions 

to available functionality and hardware resources in order to “pack” our data into 

available texture formats. 
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5.1 Voxel Storage 

Utilizing voxel storage that can be stored in hardware supported texture formats is 

critical for performance. Not only does this enable trilinear interpolation within a 

texture level, but assuming we use a consistent format across all texture hierarchy 

levels, we can enable quadrilinear interpolation. Adapting our storage mechanisms 

to enable the available texture filtering hardware allows us to produce smooth, 

visually pleasing results without adding computational overhead. 

5.1.1 Isotropic Voxel Storage 

Isotropic voxel storage is the simplest storage method and also has the lowest mem

ory requirements. Essentially all we are storing is an approximation of the diffuse 

lighting at the voxel. Thus we are able to store it inside of a single RGBA8 tex

ture. We are able use this texture format with the ARB_shader_image_load_store 

functionality, even though it is not explicitly supported, by casting it to a sup

ported R32UI format and manually converting and packing the appropriate bits. 

As our voxelization approach has the potential to create many threads attempt

ing to write to the same location, we must find a way to resolve these conflicts. 

The simplest approach is to simply take the maximum value at the voxel using 

the imageAtomicMax function, this will ensure a consistent voxelization, albeit at 

the cost of sacrificing accuracy. Ideally we would want an imageAtomicAverage 

function, but one does not exist. However, in this case we may emulate the same 

functionality as described in [CG12] using the imageAtomicCompSwap function, 
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Figure 5.1: Images of the isotropic voxelization output using the builtin 
imageAtomicMax functionality on the left vs the emulated imageAtomicAverage 
on the right. Note that the imageAtomicMax version has a tendency to saturate 
the voxel color, but overall the result is quite acceptable. Both voxelization are 
performed using the fragment-parallel voxelization approach at a voxel resolution 
of 5123. 

see Figure B.1 located in Appendix B. Effectively what this code does is create a 

“spinlock,” and updates the running average inside the loop until the lock stops 

“spinning.” 

We can observe the quality difference between emulated atomic average and 

the builtin atomic max functionality in Figure 5.1, and while there is a discernible 

quality difference between the two, it is surprisingly, not that noticeable. Consid

ering that the initial voxelization is simply the input to a hierarchy construction 

from which filtering indirect illumination results are sampled, the quality differ

ence becomes even more difficult to discern. Another consideration for the atomic 

max implementation is that the texture components should be swizzled such that 

the alpha component comes first, that is RGBA becomes ARGB. This can be 

accomplished either in the shaders directly, or with the EXT_texture_swizzle ex
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tension. The primary concern with performing the swizzle during voxel storage 

is to ensure that the appropriate unswizzle is performed during voxel access. In 

practice, however, while it makes sense to swizzle the components such that the 

alpha component dominates the atomic max comparison, it makes a virtually in

distinguishable difference in quality in most cases. Ultimately, the decision for 

which method is selected to ensure a consistent voxelization output regresses to a 

familiar tradeoff between quality vs. computation time. The performance penalty 

incurred by the image atomic average emulation can be observed in Figure 5.4 in 

Section 5.1.4. 

5.1.2 Anisotropic Voxel Storage 

As described in [CNS∗11], anisotropic voxel storage stores a color value for each 

voxel cube face. With this information, we can approximate a directional rep

resentation for the radiance emitted from the voxel. But this does increase our 

storage requirement by at least a factor of six. This can be accomplished in sev

eral ways. The most obvious is to have 6 RGBA8 textures, one for each set of voxel 

faces. However, this comes with the caveat that it will take multiple passes to 

mipmap (at least 2) as each reduction requires that both the previous and current 

level be bound to an image unit, for a total of 12, exceeding the fixed limit of 8. 

Alternately, we could over-allocate a single texture, that is allocate a single texture 

that is 6 times larger than required and implement a custom indexing scheme such 

that each anisotropic voxel face was stored in its own section of the larger texture. 
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Figure 5.2: Anisotropic voxels initialized based on dominant normal direction and 
visualized as spheres using the method described in Section 5.2.2. 

Instead of these approaches we adopt the new ARB_bindless_textures available 

on the latest generations of GPU hardware which allows us to exceed the previous 

image unit limitation. 

Since we now have a directional storage format, we can employ a more sophisti

cated storage scheme than the “store color in voxel” isotropic approach. We can use 

the surface normal to select the dominant normal direction and store the computed 

color value in the appropriate face as seen in Figure 5.2. We can further elaborate 

on this approach and weight the color contribution by the normal components and 

store the results in the faces pointed at by the normal. We have experimented with 

both of these approaches. They both have the caveat that there is the potential 

for an active voxel to have uninitialized faces, which raises the question of how 
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to appropriately deal with these faces during mipmapping, (discussed in Section 

5.3.2). For the sake of an objective comparison of the mipmapping process, we 

elected to treat the base level of the anisotropic textures as isotropic and duplicate 

the computed color value across the faces, allowing the anisotropic directionality 

of the voxels to be captured in the hierarchy construction process. Similar to the 

isotropic voxels, since the anisotropic voxels rely on the RGBA8 texture format, we 

again have the option of using the builtin atomic max function or the emulated 

atomic average as shown in Figure B.1 in Appendix B. 

5.1.3 Spherical Harmonic storage 

As in [KD10], we limit our spherical harmonics to 2 bands. There are several 

reasons for this, the primary one being that the number of coefficients of spherical 

harmonics increases quadratically with the number of bands. With two bands we 

at least retain the possibility of fitting the coefficients of 2 band spherical harmonics 

in a 4 component texture. However, it quickly gets more complex than that. Un

fortunately, an RGBA8 texture does not provide sufficient accuracy to store spherical 

harmonic coefficients, and we are forced to resort to the use of a format that stores 

32 bit floating point values. RGBA32F is the obvious candidate, unfortunately, like 

RGBA8, it is not natively supported by image atomic operations, and even worse 

it can neither be cast to another format, nor can it be “viewed” as another format 

(using GL_ARB_texture_view) supporting atomic operations. We can, however, 

use R32F with atomic operations thanks to the NV_shader_atomic_float exten
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sions, though with 4 coefficients required for each color channel (R,G, and B), this 

implies using at least 12 volumetric textures if we don’t want to resort to clever 

indexing schemes. Ultimately, we implemented this twice, first relying on a fewer 

number of textures and a modified indexing scheme, but this was found to lead 

to extreme performance degradations due to incoherence in texture accesses as 

maintaining an ordering that allowed for hardware filtering required placing ad

jacent components (e.g. R and B) at a stride equal to the texture dimensions. 

This scheme was successful for prototyping but ultimately, bindless textures were 

adopted, via the extension ARB_bindless_textures, allowing us to circumvent 

the image unit limitations and increasing performance by an order of magnitude. 

Since we are now using a medium precision floating point texture format (high 

precision being ‘double’) on Nvidia hardware, we exploit the availability of atomic 

floating point addition operations to sum spherical harmonic coefficients. Un

fortunately, all attempts to create a clever scheme to either average or perform 

more complex spherical harmonic product operations over these values in the same 

shader invocation failed. Since we could no longer use the alpha bits of our texture 

as a “spinlock,” we relied on creating a dedicated mutex texture, which allowed us 

to create a unique lock at each texture location using the imageAtomicCompSwap 

function, which should theoretically have allowed us to safely update the running 

average without interference from other threads. Tragically, it would seem that 

deficiencies in either the shader compiler or hardware rendered such approaches 

moot, and without access to a functioning debugger we were unable to accurately 

diagnose the problem. It turns out, however, that we are not alone in experiencing 
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Figure 5.3: Visualization of the spherical harmonic functions stored at each voxel 
location. Each function is represented by a raytraced sphere and the color values 
are sampled from the spherical harmonic function at each location based on the 
normal. The Crytek-Sponza scene is shown in the upper left, the Sibenik Cathedral 
is shown in the upper right, while the Conference Room is shown in the lower left 
and the Ruins scene lower right. Note, spheres are unlit and unshaded. 

difficulties trying to exploit such cutting edge features, for more information see 

A Digression on Divergence [Fol13]. Because of these issues, we were forced to 

take the extremely pedestrian route of simply normalizing the spherical harmonic 

coefficients in a second pass post-voxelization. 

Much as with the anisotropic voxels, we can use the surface normal to encode 

directional information into spherical harmonics, the results of which can be seen 

in Figure 5.3. However, since these voxels are initialized from planar surfaces with 

only one normal direction, the result is often a voxel that is colored on one side 
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and simply black on the other side. This leads to problems during mipmapping 

as this lack of information is interpreted as lack of illumination and the dark 

portion of the spherical harmonics are projected onto their parent resulting in a 

significant darkening of the scene. So, much as with the anisotropic voxels, we 

effectively consider the base level of the spherical harmonic voxels to be isotropic 

as well and allow the hierarchy construction process (mipmapping) to capture the 

directionality information. 

Considering the base level to be isotropic, and that we must already perform 

a second pass to normalize our values, we can optimize our spherical harmonic 

storage format. Instead of initializing the spherical harmonics directly, we perform 

the same isotropic voxelization as in Section 5.1.1, and then transfer the results to 

a spherical harmonic storage format. Initially, we replaced our 12 R32F textures 

with 3 RGBA32F textures, surprisingly however, this led to a moderate perfor

mance decrease, and thus we scrapped this approach. Ko et al. [KKZ08] describe 

quantization techniques for storing spherical harmonic coefficients efficiently, how

ever, they targeted precomputed rendering techniques, and thus had the luxury 

of preprocessing their data. In our application we found the minimum, SHmin, 

and maximum, SHmax, spherical harmonic coefficients for several scenes, padded 

the results, and determined a conservative SHrange value. By dividing by SHrange 

on storage we reduce the potential range of value from [−FLT_MAX, FLT_MAX] to 

[SHmin, SHmax]. This reduction in range allows us to store our spherical harmonic 

coefficients in a RGBA8 texture without significant loss of accuracy. To recover our 

original values we simply multiply by SHrange. We have effectively reduced our 
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spherical harmonic storage costs by a factor of four, which makes it cheaper in 

total memory cost than anisotropic voxels. 

5.1.4 Voxelization Performance & Costs 

Since we have now described three radically different voxel storage formats, two of 

which have two mechanisms for computing voxels (imageAtomicMax and imageAtomicAvg), 

and a third which even has different storage targets; we must characterize the per

formance costs of these different approaches. These results can be seen in Figure 

5.4, note that these voxelizations are not using the fully optimized voxelization 

technique described in Chapter 4 as this adds significant complexity, which is dif

ficult to characterize, especially in the presence of so many atomic operations. 

5.2 Voxel Sampling 

Each of our three voxel storage methods requires its own sampling method. The 

isotropic voxels by definition have no dependence on sampling direction, while the 

anisotropic and spherical harmonic methods must both take into account direc

tional sampling. 

5.2.1 Isotropic Sampling 

As there is no directionality to isotropic storage, the sampling scheme is trivial. 

The only thing worth noting here is that if the emulated atomic averaging scheme 
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Figure 5.4: Performance of a fragment parallel voxelization for several computer 
graphics scenes. In general, the more complex storage formats have a higher vox
elization cost. Also, the emulated image atomic average functionality can be 
severely detrimental to performance depending on degree of thread contention 
during voxelization. For example, the Conference Room scene relies on pure tri
angle density (as opposed to normal maps) to add additional detail to the scene, 
which causes severe busy-waiting in the atomic average’s spin-lock. Note, that the 
RGBA8 spherical harmonic voxelization outperforms isotropic voxelization, and is 
competitive with isotropic voxelization. 
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was used to initialize the isotropic voxels, the alpha component of the texture will 

not contain the expected value. Instead it will contain the count of the number of 

shader threads that attempted to write to the voxel location. In effect, the alpha 

component has become an indication of the amount of thread contention for that 

particular voxel during the voxel phase. In practice, we can generally assume base 

level voxels are opaque, ignore the alpha term, and sample the RGB components. 

5.2.2 Anisotropic Sampling 

It is not explicitly stated what sort of anisotropic sampling scheme is used by 

Crassin et al. in [CNS∗11]. The technique we have selected is described by Mitchel 

et al. in [MMG06] and used for sampling “ambient cubes.” It is essentially a simple 

weighted blending of the six directional face colors as a function of the world space 

direction, an example in 2D can be seen in figure 5.5. It is worth noting that 

spherical harmonics are directly mentioned in [MMG06] as a potential method for 

improving fidelity. GLSL code for the anisotropic sampling technique is listed in 

Figure B.2 in Appendix B. 

5.2.3 Spherical Harmonic Sampling 

Directional sampling for spherical harmonics is well defined. We shall describe it 

briefly here, for more detailed reference see Section 2.2, or Stupid SH Tricks [Slo08] 

and Spherical Harmonic Lighting: The Gritty Details [Gre03]. Since we are using 
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Figure 5.5: A 2D anisotropic voxel with per-face color values. Image courtesy of 
[Mit12]. 

only a 2 band spherical harmonic representation, we only need functions from the 

first two rows of Table 2.1 from Section 2.2. Essentially we take the dot product 

of the first four spherical harmonic functions y0...3 (i.e. the first two bands) with 

the components of the normalized negative direction vector substituted in with the 

functions recovered from the voxel storage, that is: 
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where dd is the normalized direction vector and Vr0...3 , Vg0...3 , and Vb0...3 are the 

spherical harmonic coefficients for each color component, (R, G, B), stored in the 

voxel location, V . Note, the RGB components must also be clamped from 0 to 1. 

Additionally, GLSL code for spherical harmonic sampling is listed in Figure B.3 in 

Appendix B. 
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input geometry voxelization mipmapping mipmapping

Figure 5.6: Illustration of isotropic voxel mipmapping, note the emergence of the 
red-green wall problem. 

5.3 Voxel Mipmapping 

After selecting what to store in the voxel and how to store it, the challenge then 

falls to the construction of a reasonable filtered hierarchy in which each element 

provides an approximation of the elements below it. There is necessarily a loss of 

accuracy in this process, but the challenge remains to preserve essence of the data 

contained therein. 

5.3.1 Isotropic Mipmapping 

Isotropic mipmapping is relatively straightforward, in fact there is not much more 

to be done other than to average voxel color values as weighted by their opacity. 

While simple, this approach does lead to several undesirable artifacts such as the 

red-green wall problem illustrated in Figure 5.6, which can result in two adjacent 

walls being represented as yellow voxels higher up the mipmap hierarchy. This 

problem applies to opacity values as well. If voxel opacity is averaged, it can turn 
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anisotropic
voxels

anisotropic
mipmapping

Figure 5.7: Illustration of the results of directionally dependent anisotropic 
mipmapping. 

opaque walls transparent and lead to light leaking. 

5.3.2 Anisotropic Mipmapping 

Anisotropic mipmapping is slightly more involved. As we are not employing a 

brick-map storage scheme, there is no need for the transfer of illumination to 

adjacent bricks. The process is described in [CNS∗11] and mentioned here in brief 

for the sake of completeness. As discussed in section 5.1.2, anisotropic voxels store 

6 channels of directional values, one per major direction. The voxel contents are 

then filtered anisotropically along the major axial directions, as in figure 5.7, for 

more details see [Yeu13]. 
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5.3.3 Spherical Harmonic Mipmapping 

While it can be tempting to try and apply an approach such as a spherical harmonic 

product projection as described in section 2.2.2, this has the undesirable property 

that the result of a spherical harmonic product is non-commutative, so we will 

arrive at different results based on the ordering of our operations. Instead we take 

an approach more akin to the spherical harmonic propagation method outlined in 

[KD10]. Although instead of projecting the contribution of a spherical harmonic 

function onto the faces of the neighboring voxels, we are instead projecting the 

contribution of the (up to 8) spherical harmonic functions onto the faces of the 

parent voxel in which they are contained. This involves (assuming all interior voxels 

are active) 8 projections onto 6 faces for 3 sets of spherical harmonic coefficients. 

A 2D illustration of this concept can be seen in figure 5.8. 

For all eight interior voxels, we must calculate the solid angle of each of the 6 

faces of the larger voxel as seen from the unit sphere (i.e. the spherical harmonic 

function inside the smaller voxel). This solid angle is referred to as the subtended 

solid angle of the shape. We calculate this angle analytically using integration. 

First we set up the geometry by assuming that the center of the voxel we are 

projecting from lies at (0, 0, 0) inside a voxel with an edge length of 2, meaning that 

the parent voxel has an edge length of 4. Figure 5.9 illustrates this construction 

for projections onto the six faces of the parent voxel for the top-left-front child 

voxel which defines the origin. 

First we construct the integral for the back face projection. We integrate the 
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Figure 5.8: 2D projections onto each of the faces of a higher level (parent) voxel 
by the child voxels. 
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Figure 5.9: All 6 projections for the top-left-front voxel. Voxel centers are blue 
spheres, SH projections are in green, while ddface vector are shown in blue traveling 
from the voxel center to the face center (in red). Note, the ddface vectors in this 
diagram are not normalized. 



114 

radiance of its surface points p = (x, y, z), in this case z is a constant of value 3, 

while x ∈ [−1 . . . 3] and y ∈ [−3 . . . 1], so we construct our integral as follows: 

ˆ 3 ˆ 1 

Ωbackface = L (p) dp 
−1 −3 ˆ 3 ˆ 1 (dnbackface · p) 1 = 2 dx dy 

|p| |p|−1 −3 ˆ 3 ˆ 1 ((0, 0, 1) · p) 1 = 2 dx dy 
−1 −3 |p| |p|ˆ 3 ˆ 1 

−1 −3 

z
 =
 3
2 

dx dy
 
(x2 + y2 + z2)ˆ 3 ˆ 1 3 = 

−1 −3 
dx dy
 3

2(x2 + y2 + 9)
= 1.074793009 

We follow a similar construction for the front face projection, except in this 

case z = −1 while x and y span the same values: 
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ˆ 3 ˆ 1 

Ωfrontface = L (p) dp 
−1 −3 ˆ 3 ˆ 1 (dnfrontface · p) 1 = 2 dx dy 

|p| |p|−1 −3 ˆ 3 ˆ 1 ((0, 0, −1) · p) 1 = 2 dx dy 
|p| |p|−1 −3 ˆ 3 ˆ 1 

−1 −3 

−z
 =
 3
2 

dx dy
 
(x2 + y2 + z2)ˆ 3 ˆ 1 1 = 

−1 −3 
dx dy
 3

2(x2 + y2 + 1)
= 3.113997196 (5.2) 

Now we can repeat this process 4 more times for the other four faces if we wish, 

and then another 42 times for the seven other voxels and their projections, or, we 

can observe that in all configurations there are actually only ever two different solid 

angles, which we shall term Ωnarrow and Ωwide, which correspond to projections on 

far and near faces respectively, this holds for all voxels. To recap: 

Ωnarrow = Ωfarface = 3.113997196 

Ωwide = Ωnearface = 1.074793009 (5.3) 

As a sanity check we can sum up the subtended solid angles of all the faces: 
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∀facesΩface = 3Ωnarrow + 3Ωwide 

= 3 ∗ 3.113997196 + 3 ∗ 1.074793009 

= 12.566370615 

= 4π (5.4) 

which is the total solid angle of a sphere in steradians, so we can be confident 

that our calculations are correct. Now, armed with the subtended solid angles (all 

two of them) for the 48 possible projections, we can begin the task of creating 

a single spherical harmonics function from this information. The only additional 

information we need for this is the normalized direction vectors from the centers of 

the child spherical harmonic functions to the faces of the parent voxel, ddface, and 

the coefficient’s of the projection of a cosine lobe, C (θ), pointing in the direction 

of the z-axis. For the calculation of the cosine lobe coefficients we refer our reader 

to Useful Results in Spherical Harmonics [Ins10]. From [Ins10], we can compute 

' 'the coefficients of the projection of a rotated lobe C with coefficients c0...3 such 

that the the peak of the lobe points along the direction vector dd as: 

√ � � � 
π π π π' ' ' '(c0, c1, c2, c3) = , ddy, ddz, ddx (5.5)2 3 3 3 

Considering each spherical harmonic function as a VPL, in order to find the 

VPL for the parent voxel, we must first determine the VPLs representing the 
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contribution of every active child voxel onto every face of the parent voxel. After 

determining every directional VPL from every active child voxel to each face of 

the parent voxel, we can then sum the contributions of all these VPLs to arrive at 

a single VPL representing the parent voxel. 

More formally, let us consider the parent voxel P with child voxels Vi, where 

i ∈ [0 . . . 7], each with three sets of spherical harmonic coefficients for each color 

band, Vr0...3 , Vg0...3 , and Vb0...3 , and similarly for the SH coefficients of P . We 

define the vector Vi,r, as the vector of red SH coefficient for voxel V , and use 

corresponding notation Vi,g and Vi,b for green and blue. That is 

Vi,r = (Vi,r0 , Vi,r1 , Vi,r2 , Vi,r3 ) 

Vi,g = (Vi,g0 , Vi,g1 , Vi,g2 , Vi,g3 ) (5.6) 

Vi,b = (Vi,b0 , Vi,b1 , Vi,b2 , Vi,b3 ) 

and for any given child voxel, Vi, let us consider the normalized direction from its 

center to the center of the face we are projecting onto to be ddface. Then we define 

the function SH to evaluate the spherical harmonic coefficients of a face as: 

⎛ ⎞√ √ √
3ddface,y 3ddface,z 3ddface,x ⎠SH ddface = ⎝1, − , , − (5.7)2
√ 

2
√ 

2
√ 

π π π 

and the function SHcos to evaluate the spherical harmonic coefficients of the cosine 



  � �

    
    
    

� � 

118 

lobe in the normalized direction ddface as: 

√
 
ddface,z, − 

� 
π ddface,x3 (5.8)
π π π
 

SHcos 
ddface 

ddface,y,2= , −
 3
 3


Finally, this allows us to express the summed spherical harmonic coefficients for 

the parent voxel, P , as: 
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    7 

i=0 ∀faces
 Ωface SH ddface · Vi,b SHcos 

ddfacePb0...3 

Once we have the summed spherical harmonic coefficients for the parent voxel 

P , we must normalize them, which is accomplished simply by a division by the 

number of active voxels contributing to the sum (i.e. average the results). 

5.4 Sparse Mipmapping Optimizations 

Instead of naively processing an n3 number of voxels when constructing our mipmap 

hierarchy, we can output an active-voxel-list at each mipmap level. The active

voxel-list consists of only those voxel locations which must be processed in the 

next mipmap level. This is accomplished using what we shall term “mutex tex

tures” and hardware supported high performance atomic counters provided by the 

ARB_shader_atomic_counters extension. 
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Figure 5.10: Implementation of an optimized voxel-mipmapping scheme which 
relies on the output of active-voxel-lists at each stage of the voxel-hierarchy. 
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The mutex texture is necessary to ensure that during the voxelization pro

cess the active-voxel-list is appended with the location of a voxel only once for 

each active voxel (in the next miplevel), as opposed to each time the voxel is 

accessed (as many threads will try to write to the same voxel location). The 

imageAtomicCompSwap operation is used on the mutex texture to uniquely “lock” 

a voxel location. The atomic counter is then incremented to provide a unique 

location to output to the “append buffer” (i.e. the active-voxel-list). The loca

tion of the voxel is then written to the active-voxel-list. What we are left with is 

a list of sparse active-voxel locations, i.e., only the voxels that actually need to 

be processed. By disabling the rasterizer and rendering a point list of only these 

active-voxel locations, we can sparsely process the relevant geometry stored inside 

our dense textures, see figure 5.3. While the addition of more atomic operations 

during voxelization does increase voxelization times, by employing this technique 

during hierarchy creation, we can drastically speed up the mipmapping process, 

resulting in an overall speedup, see Figure 5.11. In addition to outputting a sparse 

active-voxel-list for the next miplevel during voxelization, we additionally create a 

sparse voxel list for the current level. This is useful as it allows for sparse processing 

of the active voxels without processing the entire volume. 
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Figure 5.11: Combined performance of voxelization and mipmapping with active-
voxel-lists disabled and enabled for several scenes and voxel storage formats. Note 
that for all voxel formats (besides isotropic) there is a net gain in performance for 
all scenes. Furthermore, for the spherical harmonic cases the active-voxel-list can 
be used in the post-voxelization step (normalization for 12xR32F and transfer for 
3xRGBA8) resulting in an improvement in overall voxelization time as well. 
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Chapter 6: Voxel Based Illumination 

Recently, voxel based methods have gained prominence among methods to com

pute global illumination solutions. This has been underscored by their success in 

commercially shipping game engines, notably the CryEngine in the case of Light 

Propagation Volumes [KD10], and tech demos in the case of the Unreal Engine 

and Voxel Cone Tracing [Mit12]. In this Chapter, we will review the underlying 

technique (Section 6.1), in addition to demonstrating its application to several il

lumination effects. Images depicting the incremental addition of voxel cone tracing 

based illumination effects can be seen in Figure A.3 and Figure A.4 in Appendix 

A. 

6.1 Voxel Cone Tracing 

Cone tracing provides an extremely high-performance alternative to ray tracing. 

As opposed to tracing many infinitesimally small rays, finding an approximate 

sampling over an area simply requires setting the appropriate cone aperture. The 

only caveat is that you must have an appropriate volumetric, hierarchical proxy of 

your scene to sample from. Fortunately, we have covered this in previous chapters 

(cf. Chapter 4). 

Cone tracing is similar to volumetric ray-casting, save that we use the sample 
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Figure 6.1: Geometric construction of samples, p0, and p1 along a cone of aperture 
θ degrees in direction ωd . Note that the previous distance and radius is used to find 
the next sample location. 

distance, d, from the originating point, x, and the cone aperture, θ, to determine 

the radius, r, of the sample point, p, which is, in turn, used to calculate the correct 

Level-of-Detail (LOD) to sample from (i.e. the correct mipmap level). The basic 

geometry of this construction is shown in Figure 6.1. We can easily compute the 

radius r = d · sin θ 
2 ; the radius of a sample point represents one half of the voxel 

extent, thus to compute the appropriate LOD level to sample from we take the 

base 2 logarithm of the sample’s diameter or lod = log2 (2 · r). 

We are able to compute the appropriate radius for the second sample, p1, based 

on the aperture and value of the first sample, by exploiting the common ratios of 
sin θ 

r0 r1 2the similar right triangles, = . That is r1 = (d0 + r0) , the second 
d0 d1 1−sin θ 

2 

part of the expression remains constant for the evaluation of the cone and can be 

precomputed. We refer to this as the cone ratio, and through repeated application 
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Figure 6.2: Illustration of the voxel cone tracing technique and the correspondence 
between the sampling radius of the cone and the quadrilinearly interpolated voxel 
value. 

sin θ 
2we can determine the points and radii along the cone, i.e. ri+1 = (di + ri) .1−sin θ 

2 

Thus in this manner we take successive samples p0, p1, . . . , pn along the cone sam

pling from the voxels volume, V , along the cone. For the shadows we are only 

concerned with the alpha component Vlod,α [pi], while for diffuse interreflection we 

would be interested in the color value Vlod,xyz [pi]. The sample is then quadrilin

early interpolated (trilinearly interpolated along spatial dimensions, then linearly 

interpolated between mipmap levels) by the texture filtering hardware. This sam

pling approach is illustrated in Figure 6.2. Additionally, GLSL code for a voxel 

cone tracing routine is listed in Figure B.4 in Appendix B. 
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6.1.1 Avoiding self intersection 

Due to the volumetric nature of the voxelization, care must be taken to ensure 

that initial sampling points are not sampled within the voxels representing the 

geometry the ray is exiting from, see Figure 6.3. While we can simply stretch out 

the starting distance, ds, shown in Figure 6.1, this doesn’t necessarily guarantee 

that we will avoid sampling inside of the voxels we are trying to exit. Since a voxel 

occupies a fixed space, and the provoking geometry can intersect any part of the 

voxel, we must ensure that the first sampling point is at least the height of a voxel 

plus the minimal sampling radius (half a voxel) above the plane defined by the 

normal and the ray origin. However, when it comes to shadows, there’s often a 

need for a fudge factor, so we set this value, f , to the distance of 1.5 voxels and 

allow it to be manipulated by the user. 

Thus to compute the initial starting distance, we take one and a half, or f , 

times the size of the voxel times the dot product of the surface normal (not the 

bump-map normal) with the direction vector, assuming both are normalized: 

f |v|
ds = (6.1)(dn · ωd ) 

An additional advisable practice is to clamp the initial distance between some 

minimum, i.e. fmin |v|, and some selected maximum, fmax |v|. This will prevent 

the cases where dn · dω approaches zero, and when the ds becomes too large and tries 
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Figure 6.3: Illustration of technique 

to sample outside of the volume, thus equation 6.1 becomes: 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

fmin |v| if dn · dω > 1 

ds = fmax |v| if dn · ω <d fmax (6.2)
fmin 

fmin|v| otherwise(n·ω) 

Note that we have specified |v| as the size of the voxel, which is an indicator of 

the minimal length of travel needed to exit a voxel. This value differs depending 

on the selected voxelization method. If the voxelization is conservative, |v| should 

2 2 2be the voxel diagonal, that is |v| = v + v + v . But if we are using a thin,x y z 

6-separating voxelization, |v| should be the length of the longest side of the voxel, 

as this is the minimal length needed to exit the diamond inscribed inside the voxel. 

This approach works extremely well when tracing specular cones (Section 6.5), 

works well on diffuse cones (Section 6.4), but does not work so well on ambient 

occlusion (Section 6.3), as the occlusion effect is too sensitive to the presence of 

self-occlusion. Since both diffuse interreflection and ambient occlusion can be cal

culated in the same pass, we must resort to a less elegant trick of simply shifting 
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the starting position, x, some distance, f , along the normal for both. For shadow

ing, this technique can be helpful for light sources near the geometry, but causes 

artifacts for distant light sources. 

6.1.2 Alternate Diffuse Cone Tracing 

As will be discussed shortly in section 6.4, diffuse cones are generally traced at a 

wider cone aperture, commonly 60°, around a predetermined set of cone directions. 

At such large apertures, the challenge of avoiding self-illumination through self-

intersection becomes even greater. Even if we avoid self-intersection with the first 

cone sample point using the method as described in section 6.1.1, we may still 

collide with higher mipmap levels as the sample radius expands. Another problem 

with such wide cones is the potential to skip through thin geometry. Thus we 

have implemented an alternative sampling technique for 60° cones, in which the 

sampling points fall precisely on each LOD level, and the radius and distance is 

precisely doubled with each iteration (this is less than the previous technique at 

60°), this can be seen in Figure 6.4. 

Another desirable property of this approach is that it removes the dependency 

on a mipmapped texture, since we are sampling precisely at each level of the 

hierarchy, we could potentially use different textures and formats for each level of 

the hierarchy. More on this in the Future Work section. This approach makes it 

easier to avoid self-intersection in higher mipmap levels. To avoid self-intersection 

at the base level we resort to simply offsetting the starting position, x, some 
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Figure 6.4: Geometric construction of the first three samples using the cone tracing 
technique specialized to diffuse cones at 60°, note the overlap in samples help to 
prevent skipping through thin geometry. 

distance, f , along the normal. We have again provide GLSL code for the specialized 

60° diffuse cone tracing routine in Figure B.5 in Appendix B. 

6.2 Soft Shadows 

Soft shadows are typically a challenging problem in computer graphics. Traditional 

techniques to evaluate shadows, e.g. shadow mapping, tend to create unpleasant 

aliasing artifacts. Over the years many techniques have attempted to address the 

shortcomings of shadow mapping, i.e. Variance Shadow Maps (VSM) [DL06], Per

centage Closer Filtering (PCF) [RSC87], Cascaded Shadow Maps (CSM) [Dim07]. 

Invariably, these come with additional computational costs, memory requirements 

and code complexity. Ray-based approaches provide a straightforward approach 

to shadowing, but can potentially require tracing millions of extra rays to achieve 

a plausible soft shadow effect. We use soft shadows as an example of how cone
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tracing is performed, and describe in detail how to perform sampling using cone 

tracing. 

Cone tracing completely inverts the relationship between computational com

plexity and shadow “softness.” With cone tracing, the softer a shadow is, the easier 

it is to compute. This is a side effect of the cone tracing approach. In order to 

get “hard” shadows, we specify a cone aperture of zero degrees, which produces 

a result analogous to raycasting through a dense volumetric texture. All samples 

are taken from the lowest mipmap level, and the step size remains constant at 

the size of a single voxel. However, when we increase the cone’s aperture, the 

sampling rate is reduced by a linear function of the cone ratio. As each sample 

is taken at a further distance from the previous, we start sampling from higher 

mipmap levels. Our shadow function thus takes on a form similar to that of the 

emission-absorption model from volume rendering, with the addition of hierarchical 

sampling, see equation 6.3. 

nn 
S (x, dω) = 1 − (1 − Vlod,α [pi]) (6.3) 

i=0 

We compute voxel-traced soft shadows in a deferred context, for every pixel 

on the screen we trace a cone towards the light source. If it arrives at the light, 

our view is unoccluded, otherwise we accumulate the degree of occlusion along the 

shadow ray. We can see the performance characteristics of tracing shadow cones 

of varying cone apertures in Figure 6.5. Examples of soft shadow tracing can be 

seen in Figure 6.6. 
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Figure 6.5: Shadow cone tracing performance of several scenes, varying the cone 
aperture by increments of 5°. For the Sponza and Ruins scenes, the light source 
is above the scene, while for the Sibenik and Conference Room scenes, the light 
source is inside the scene. 
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Figure 6.6: Voxel cone traced soft shadows of the column in the Sibenik Cathe
dral scene. Cone apertures vary from 0°, 2°, 4°, and 6°. Note that even the 0° 
cone aperture results in a slight soft shadowing effect due to the hardware based 
interpolation. This behavior could be modified by changing the hardware texture 
filtering parameters, but it is hard to imagine a scenario in which doing so would 
be desirable. Note, this scene exhibits no global illumination effects. 
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6.3 Ambient Occlusion 

Ambient occlusion is often referred to as a simpler form of global illumination, when 

in reality it is a non-physically based heuristic used to determine an occlusion value 

based on the presence of local geometry. Commonly performed in screen space 

using the depth buffer, it provides a subtle (or sometimes not so subtle) shadowing 

effect at sharp concave creases in the scene geometry (i.e. interior room edges and 

corners). Lack of full geometry information in the depth buffer leads to artifacts 

at regions with depth discontinuities. Since we already have a fully volumetric 

filtered scene representation, we can implement a version that does not suffer from 

these artifacts. Much like we will see with diffuse interreflection (Section 6.4), 

ambient occlusion can be computed by tracing cones over the hemisphere Ω+, and 

is computed as follows: 

ˆ1 
O (x) = V (x, dω) (dn · ωd ) ddω (6.4)

π Ω+ 

Applying the concept of voxel cone tracing to equation 6.4, we partition the 

integral into N conic regions: 

N0−1 ˆ1 
O (x) = V (x, dωk) (dn · ωd k) ddωk (6.5)

π Ω+ 
kk=0 

where Ω+ 
i is the portion of the upper hemisphere represented by cone i. We can 

move the visibility function, V , outside of the cone integral on the assumption that 
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visibility is the same within a cone: 

N0−1 ˆ1 
O (x) = V (x, dωk) (dn · ωd k) ddω (6.6)

π Ω+ 
kk=0 ´

We can create a weight function, Wi = (dn · ωd ) ddω, and write the final Ω+ 
i 

ambient occlusion formulation as: 

N0−11 
O (x) = V (x, dωk) Wk (6.7)

π k=0 

We are now left only with the task of determining the number and orientation of 

the cones and their associated weights. For instance, we can have 6 cones traced 

with 60 degrees over the hemisphere oriented as follows (courtesy of [Yeu13]): 

dω0 = (0.000000, 1.000000, 0.000000)
 

d = (0.000000, 0.500000, 0.866025)
ω1
 

d = (0.823639, 0.500000, 0.267617)
ω2
 

d = (0.509037, 0.500000, −0.700629) (6.8)
ω3
 

d = (−0.509037, 0.500000, −0.700629)
ω4
 

dω5 = (−0.823639, 0.500000, 0.267617)
 

We can solve for the weights Wk analytically by integrating the Lambertian reflec

tive surface for each region on the hemisphere: 
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ˆ 
cos θ sin θdθdφ =
 (6.9)
W5 = 

π 
6 

Which sums to π which is the expected result for a Lambertian surface: 

0 
W0...5 = π (6.10) 

Note, this should not sum to 2π, which is somewhat counter-intuitive, since 2π is 

the steradians for a hemisphere. The cos θ term is responsible for this reduction. 

This is because each point on a Lambertian surface has a reflective intensity defined 

by the cosine function, however, the measured reflected radiance is still independent 

of the viewing direction. 

Since it uses the same cones, ambient occlusion can be computed alongside 

diffuse interreflection with negligible extra cost. Generally, ambient occlusion cones 

will be traced at a much shorter distance, so we must be sure to stop updating the 
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Figure 6.7: A set of cones emanating from the surface point x, and oriented around 
the normal dn is used to compute ambient occlusion by calculating an “accessibility 
value” indicating the presence of nearby geometry. 

occlusion value even as we continue to update the diffuse cones. Examples of the 

ambient occlusion calculation using cone tracing can be seen in Figure 6.8. 

However, by performing ambient occlusion cone tracing in isolation, we can ob

serve the performance characteristics of the ambient occlusion cone tracing method 

in Figure 6.9. Note that the ambient occlusion calculation remains the same for 

all the different voxel methods, thus it is not informative to differentiate between 

them. 

6.4 Diffuse Interreflection 

Diffuse interreflection works in much the same manner as ambient occlusion, except 

that instead of gathering occlusion values, we gather the reflected radiance from 

surrounding geometry, see Figure 6.10. 

ˆ
L (x → ωd o) = fs (x, dωi, dωo) (dn · ωd i) L (x ← ωd i) ddωi (6.11) 

Ω+ 
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Figure 6.8: Examples of ambient occlusion computed for several classic computer 
graphics scenes. 
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Figure 6.9: Ambient occlusion cone tracing performance for several classic com
puter graphics scenes at 2563 and 5123 voxel resolutions. Note, that the post 
voxelization cost of tracing different scenes is largely invariant with respect to 
scene geometry. 
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We can remove the BSDF function, fs, as we are assuming diffuse reflectance (i.e. 

the same everywhere over the hemisphere): 

ˆ
ρ 

L (x → dωo) = (dn · dωi) L (x ← ωd i) ddωi (6.12)
π Ω+ 

where ρ ∈ [0, 1] is the diffuse reflection coefficient or albedo. Now it falls once again 

k

to partitioning the integral into N conic regions: 

N0−1 ˆ
L (x → dωo) = 

ρ 
π Ω+ 

k=0 

(dn · dωk) L (x ← ωd k) ddωk (6.13) 

k

We can pull the incoming term out of the integral under the assumption that the 

incoming radiance is constant within a cone: 

N0−1 ˆ
L (x → dωo) = 

ρ
L (x ← dωk) ωk

π Ω+ 
k=0 

(dn · dωk) dd

k

N0−1 

= 
ρ

L (x ← dωk) Wk (6.14)
π k=0 

where Wk = (dn · ωd k) ddωk is the same weight function as in Equation 6.10 which Ω+
´

we can solve for or assign so long as the weights sum to 2π (the steradians over a 

hemisphere). The directions dωk (as show in equation 6.8) indicate the precomputed 

directions of the cones. 
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Figure 6.10: Much like ambient occlusion (cf. Figure 6.7), a set of cones emanat
ing from the surface point x, and oriented around the normal dn can be used to 
compute diffuse interreflection as well by accumulating the reflected illumination 
off of nearby geometry from the voxel based proxy. 

We compare both the generic cone tracing technique described in section 6.1 

and the specialized technique described in 6.1.2 and display the results in Figure 

6.11. 

Performance of the two techniques is far more differentiated than expected. 

The specialized cone tracing technique tends to outperform the generic cone trac

ing method, as seen in Figure 6.12, which is surprising, considering that it is 

actually sampling more frequently. It is possible that this is evidence that the 

final interpolation (between mipmap levels) of the quadrilinear interpolation is not 

actually performed in hardware, but instead emulated in software, or, the higher 

sampling rate is simply causing the specialized cone tracing to saturate and ter

minate earlier. 

6.5 Specular Reflection 

Specular reflections are achieved by tracing a single cone along a ray that is mir

rored about the surface normal, see Figure 6.13. In general, the specular cone has 
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Figure 6.11: Comparison of diffuse interreflection techniques, the generic cone trac
ing technique at 60° is on the left, while the specialized technique for diffuse cones 
of 60° is on the right. We observe that the specialized cones seem to do slightly 
better at avoiding self-illumination, yet exhibit somewhat brighter highlights. 
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Figure 6.12: Timing data of the diffuse interreflection methods for the Sponza 
scene at a voxel resolution of 2563 comparing diffuse cone tracing performance for 
the three implemented voxel methods and the generic vs. specialized cone tracing 
methods. The specialized cone tracing method provides a performance increase 
across all implementation, and in the case of the spherical harmonic method a 
speedup of over 50%. Note, the compact spherical harmonic storage (RGBA8) is 
quite competitive with isotropic and anisotropic trace times. 
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Figure 6.13: A specular cone is reflected around the normal. The cone aperture 
can be determined by the glossiness of the material. 

a much tighter aperture than the diffuse cones, which leads to a greater sampling 

rate and higher traversal costs. 

In the case of cones with zero degree apertures, cone tracing degenerates into 

ray casting within the base levels of volume textures and the specular surface 

reverts into a mirror, albeit one that mirrors the voxel based proxy geometry 

rather than the actual geometry of the scene. As the cone aperture is increased 

in size, the sampling rate decreases, performance increases and the result is an 

extremely plausible specular effect, see Figure 6.14 for examples. 

The performance of this method increases dramatically as the cone aperture 

increases see Figure 6.15; while it may not be suitable for perfect mirror reflections, 

its performance for glossy type reflections is extremely competitive, and more than 

suitable for real-time applications. 

Specifying the cone aperture is a good way to determine performance metrics, 

but in general, the specular reflection is based on the glossiness of the material, 

g, and the cone aperture calculation would be based upon this and the selected 

illumination model. 
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Figure 6.14: Images of specular tracing in the Crytek Sponza scene. From left 
to right and top to bottom cone apertures are 0, 5, 10, 15, 20, and 25 degrees 
respectively. Dark surfaces are not specularly reflective. 
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Figure 6.15: Comparison of tracing times for specular cones for the three imple
mented voxel formats. Tracing time for the specular cones decreases rapidly as the 
cone aperture increases. 
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Chapter 7: Voxel Based Pipeline
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Figure 7.1: Illustration of the full voxel based lighting pipeline. We construct 
a filtered mipmap hierarchy of direct illumination values, which is then used to 
calculate the per-pixel indirect illumination component to accumulate with the 
direct illumination computed in a deferred context. 

In Chapter 6 we have described and shown how to achieve many effects required 

for a global illumination solution, but not how to assemble them into a complete 

solution. Additionally in Chapter 5 we have discussed a variety of voxel storage 

approaches. Ultimately, to compute the final global illumination solution, we must 

incorporate both the direct and indirect illumination. 
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7.1 Direct Illumination 

In order to compute the indirect illumination we must compute the direct illumi

nation component for the voxels first. Effectively, we perform the direct lighting 

computation in two places in our pipeline (cf. Figure 7.1). We must initialize the 

voxel hierarchy with direct illumination values in order for it to be a viable source 

of gathered indirect illumination values for the final rendering pass. The initialized 

voxel color must also take into account the presence of shadowing information. As 

the voxel hierarchy is not yet constructed, we cannot employ voxel based shadows 

(as described in Section 6.2). Thus, we resort to using traditional shadow mapping 

techniques. We render shadow maps from the light sources, and pass these along 

to the voxelization stage along with all lighting information. This has the benefit 

of allowing us to avoid the light injection stage present in [CNS∗11, KD10, Yeu13], 

but comes at the cost of requiring re-voxelization in the event of lighting changes. 

There are, however, several ways in which the re-voxelization costs can be miti

gated and/or eliminated. For now, let us focus on the benefits of sampling from 

the shadow maps, rather than attempting to “inject” light into the volume. By 

sampling from the shadow map we avoid the problem illustrated in Figure 7.2a 

where a low resolution shadow map is unable to provide full coverage for the scene 

voxels, an effect that is displayed in Figure 7.2b. By sampling the shadow map 

from the voxels, as in Figure 7.2c, we avoid gaps in our shadow coverage. 

The re-voxelization cost can be mitigated somewhat by only re-voxelizing scene 

geometry at a different frequency than the render frame rate (i.e. re-voxelize only 
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Figure 7.2: (a) Demonstrates the improper coverage of a shadow map with insuf
ficient resolution, the result can be seen in (b) credit: [Yeu13]. By sampling the 
shadow map from the voxel, as in (c),we avoid shadow coverage gaps, as evidenced 
in (d) (which also has direct lighting information). 
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every 5th frame). Re-voxelization required by changing lighting conditions can be 

avoided entirely if during voxelization a sparse active-voxel-list was constructed. 

In this case, the active voxels can be processed and updated directly. 

The computation for the color of the voxel, Cvoxel, is straightforward. Essen

tially, its color is derived from the standard direct illumination lighting equation, 

omitting the specular and ambient terms, as they are, quite literally, hacks to ap

proximate indirect illumination. So, Cvoxel, is really just the lit and shadowed 

diffuse coloring: 

Cvoxel = ClightCdiffuse dn ·dl S (7.1) 

where Cdiffuse is the color sampled from either the object’s diffuse texture, or it’s 

diffuse material, Clight is the light color, dn is the surface normal, or the bump map 

dnormal in the presence of a bump map, anddl is the normalized light vector, dn · l 

can also be referred to as Idiffuse, the intensity of the diffuse lighting contribution, 

and S is the shadowing contribution sampled from a traditional shadow map. 

Direct illumination for the pixel, Cpixel, is calculated in the exact same manner 

as for the voxel, except that in this case we have the option to use traditional 

shadow mapping as with Cvoxel, or, use the voxel cone tracing based shadow 

function described in Eq. 6.3, from Section 6.2. Since we are demonstrating the 

viability of voxel based rendering approaches, we used the voxel based shadowing 

approach for Cpixel. 
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7.2 Indirect Illumination 

Indirect illumination is computed using the technique described in Chapter 6. Since 

we are rendering in a deferred context, for every pixel in the scene we have access 

to its diffuse color, voxel position, bump map normal, surface normal, and depth. 

We use the voxel position and normal information to initiate the indirect diffuse 

color computation, CindirectDiffuse, as per the methodology described in 6.4 as 

a side effect of tracing diffuse cones. We also compute (using an additional guard 

on sample distance) the ambient occlusion, O, in the scene at no additional com

putational cost. To compute the indirect specular component, CindirectSpecular, 

we use the method described in Section 6.5. 

7.3 Final Rendering & Results 

We perform our final rendering in a deferred context, accomplished by rendering 

a single screen covering triangle, and sampling from deferred textures holding dif

fuse, normal, specular, voxel position, and depth information. We have described 

how to find the direct and indirect lighting contributions, and now have all the 

components needed to compute our final global illumination solution. But before 

we proceed, we discuss how best to incorporate the ambient occlusion contribution, 

O, since it is not a physically based quantity, we can elect to omit it, but ambient 

occlusion can be useful to hide artifacts such as light leakage. Let us define the 

ambient occlusion contribution, cO, which can be varied from 0 to 1. Since, ambi

ent occlusion is a shadow term, we modulate the shadow term, S, by the ambient 
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occlusion contribution, O, with a weight determined by cO. That is: 

S = O (1 − cO) + S · O · cO (7.2) 

allowing the user to control the ambient occlusion contribution as desired. Finally, 

now that we have defined all the terms of our final lighting formula, we can express 

the final color value, Cfinal, as: 

Cfinal = Clight dn ·dl S + CindirectDiffuse Cdiffuse+CindirectSpecularCspecular 
(7.3) 

where Cspecular is the specular sample stored in the deferred specular texture. 

Final renderings can be seen in Figure 7.3, note the presence of soft shadow

ing, diffuse interreflection, and glossy surfaces. Additionally, images depicting the 

incremental addition of voxel cone tracing based illumination effects can be seen 

in Figure A.3 and Figure A.4 in Appendix A. 

Unless otherwise mentioned (as in Chapter 4), all results were generated on an 

Intel Core i7 950 @ 3.07 GHz with an NVIDIA GeForce Titan GPU. The selection 

of the Titan GPU was made because its 6 gigabytes of on-board RAM allowed us 

to implement our approach using dense 3D textures while waiting for inevitable 

release sparse texture support. Otherwise it would have been necessary to expend 

significant time and effort towards the creation of complex data-structures which 

have nothing to do with our research. Additionally, until the late addition of 

bindless textures (a feature only available on Kepler class hardware) our approach 
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Figure 7.3: Full global illumination final renderings for the Sponza Atrium and 
the Ruins. The images are rendering using isotropic, anisotropic, and spherical 
harmonic voxels from the top row to the bottom, respectively. 
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worked just fine on a much older GTX 480 (Fermi class hardware) with 1.5GB of 

on-board ram, albeit at a lower voxel resolution. We have largely displayed timings 

and results for each component of the rendering (or pipeline component) as we 

have introduced them. All scenes have been rendered at a resolution of 1280 × 720 

(720p). We now display the final render timings for Sponza Atrium and Ruins 

scenes in 7.4 as a sum of their component parts. These scenes were selected as 

they provided the best approximation of the geometric and material complexity 

likely to be found in modern games. In many ways the timings illustrated in 

Figure 7.4 are a representation of the worst case performance results. We have not 

enabled sparse-voxelization, nor have we fully specialized the voxelization pipeline 

to each target storage format using the methods in Chapter 4. The entire rendering 

engine is solely the product of a single graduate student, working without the 

benefit of guidance from an industry rendering expert. Furthermore, as will be 

discussed, there are many further optimizations that could be implemented that 

do not directly relate to the subject matter of this dissertation. 

Nevertheless, the results are sufficient for comparing the strengths and weakness 

of the implemented storage formats. As expected, the simplest format, isotropic, is 

the fastest, while the complexity of the anisotropic and spherical harmonic formats 

predictably increase rendering times. This trend holds true when looking at vox

elization performance in isolation. While there is a performance cost going from 

the isotropic to anisotropic formats, there is perhaps not so great a cost as expected 

when moving from the anisotropic to spherical harmonic formats. Surprisingly, the 

spherical harmonic mipmapping is over twice as fast as the anisotropic mipmap
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Figure 7.4: Complete profiles of the final rendering times for the Sponza Atrium 
scene and the Ruins scene, for the isotropic, anisotropic, and spherical harmonic 
storage formats. 

ping. Unfortunately, the sampling cost is by far the highest for the spherical 

harmonic approach, as it is clearly superior in capturing directionality informa

tion, as best seen in Figure A.2 in Appendix A. In the end, these timings serve less 

as an indicator of their suitability as real-time rendering approaches, but rather 

an indicator of their time until more widespread adoption. 
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Chapter 8: Conclusions and Future Work 

In this dissertation, we have presented three voxel storage models for use in voxel 

cone tracing. These storage models allow for the comparison between direction-

ally independent isotropic voxels vs. directionally dependent anisotropic voxels 

implemented as a discrete set of per face color values (cf. Section 5.1.2), and di

rectionally dependent anisotropic voxels implemented as spherical harmonics (cf. 

Section 5.1.3), a novel contribution, unique to this work. 

In support of this work, we have contributed an innovative voxelization ap

proach, detailed in Chapter 4, that is currently the fastest known method for 

generating a regular discretized geometry representation from an input triangular 

surface geometry on consumer grade graphics hardware. 

To facilitate voxel cone tracing, we have detailed efficient real-time filtered hier

archy creation within the mipmap levels of the supported texture formats, enabling 

hardware accelerated quadrilinear filtering of our voxelized volumetric scene proxy 

(cf. Section 5.3). Once again, the method for the mipmapping of spherical har

monics (cf. Section 5.3.3) represents a new contribution found only in this work. 

Additionally, we have contributed a method for performing sparse computations in 

a dense voxel storage medium by employing active-voxel-lists, vastly accelerating 

mipmapping time at a small cost to voxelization time (cf. Section 5.4). 

We have described in unprecedented detail the geometric construction of cone 
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tracing based sampling methods (cf. Section 6.1), and described methods for 

avoiding self-intersection when tracing within a voxelized environment (cf. Section 

6.1.1). We have further expanded upon the concept of voxel cone tracing by 

noting the potential for optimizing and specializing cone based sampling methods 

based upon cone aperture. In Section 6.1.2, we described a cone tracing method 

optimized for tracing cones with an aperture of 60°, an angle ideally suited for 

tracing diffuse interreflection. Furthermore, this alternate cone tracing method 

has the side effect of sampling precisely at each mipmap level, obviating the need 

for the previously desirable quadrilinear hardware filtering, and enabling instead 

the possibility of using different voxel storage methods (and texture formats) for 

different levels of the voxel hierarchy, i.e. higher order spherical harmonics at 

higher levels of the hierarchy. 

In Chapter 6 we described the computation of many global illumination effects 

using voxel cone tracing, which many previously considered too expensive for real-

time rendering. These include Soft Shadows (Section 6.2), Ambient Occlusion 

(Section 6.3), Diffuse Interreflection (Section 6.4), and glossy Specular Reflections 

(Section 6.5). Our care in constructing a generic voxel based cone tracing pipeline 

allowed every one of these effects to be executed for any voxel storage method on 

the condition that appropriate methods were provided for the following: directional 

voxel sampling, voxel storage, and voxel mipmapping. 

There are many techniques that can enhance final rendering performance that 

are orthogonal to the approaches discussed in this thesis. For instance, performing 

cone tracing at half resolution and up-sampling the indirect lighting results back 
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to full resolution, or exploiting temporal coherence to avoid a full indirect lighting 

computation for each frame as in [SHR∗09]. In the same vein, assuming a naive 

scheme of re-voxelizing all scene geometry, we can lower the update frequency of the 

voxelization and mipmapping without introducing too many artifacts. This will 

generally be dependent on the speed of moving geometry in the scene. Considering 

that voxelization is often the most expensive part of the pipeline (especially for 

simpler voxel storage formats), we can further amortize the cost of voxelization by 

trivially implementing a system that flags and re-voxelizes only the scene geometry 

that has actually been changed, providing a dramatic cost savings in practical real-

world scenarios. 

Furthermore, considering the presence of dedicated rasterization hardware on 

modern GPUs and the many similarities between voxelization and rasterization, 

it would seem (at least to this author) that the extension of the rasterization 

hardware to more natively support voxelization would be a fruitful avenue of ex

ploration yielding yet faster and more easily implemented dynamic voxelizations. 

Outside the realm of theoretical hardware improvements, the recent introduction of 

broad API support for sparse textures should lead to dramatically reduced memory 

requirements and/or higher voxel resolutions. 

Shadow cone tracing is interesting, but falls in the awkward position of requiring 

that it execute after the stage in which it would be most useful; that is, it must 

occur after hierarchy construction in which shadowing information is useful for 

constructing the initial radiance distribution. That being said, it does still have 

potential application as a means of computing soft penumbra regions when coupled 
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with traditional shadow mapping. 

Another interested avenue of exploration would be to further experiment with 

combinations of the light propagation volumes and voxel cone tracing techniques. 

For instance, we could select a level of the spherical harmonic mipmap hierarchy 

and perform light propagation based radiance diffusion, and sample from this for 

the indirect diffuse component of our lighting equation, and combine this with 

specular cone tracing for the indirect specular component of our lighting equation. 

Future work in improving voxelization performance could exploit true dynamic 

parallelism facilities currently only available in CUDA 5 to spawn exactly one 

thread for each triangle/voxel pair. While this would still obviate the need for 

complex tiling and sorting strategies, it would unfortunately remove the ability 

to exploit the remaining fixed-function hardware present on the GPU exposed to 

the graphics pipeline. Additionally, we could explore more robust cutoff prediction 

strategies, techniques for automatic minimum detection, and more sophisticated 

classification approaches. 

The voxel cone tracing approach is, at the same time, deceptively simple, and 

extremely robust. It excels at reproducing effects that would otherwise be ex

tremely computationally expensive. Ultimately, its adoption in major game engines 

seems inevitable [Mit12], and the evolution of voxel cone tracing will invariably be 

tied to accuracy of the directional radiance sampling in the upper levels of its 

voxel hierarchy. In order to fully exploit the available filtering hardware of modern 

GPUs, this directionally dependent radiance storage must be based on orthogo

nal functions, thus naturally leading to spherical harmonics. In this dissertation 
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we have not only endeavored to, but succeeded in demonstrating that spherical 

harmonics represent a viable voxel storage format for voxel cone tracing. 
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Appendix A: Additional Images 
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Figure A.1: Comparison of the quality of specular cone tracing for the three voxel 
formats for the Sponza scene at 2563, from top to bottom istropic, anisotropic, 
and spherical harmonic voxel formats respectively. 
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Figure A.2: Comparison of the quality of diffuse cone tracing for the three voxel 
formats for the Sponza scene at 2563, from top to bottom istropic, anisotropic, and 
spherical harmonic voxel formats respectively. Images with diffuse cones traced 
using the generic method are on the left, while images with diffuse cones traced 
using the specialized method are on the right. 
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Direct Light Direct Light + Shadow

Light + Shadow + Diffuse Interreflection Light + Shadow + Specular Reflection 

Light + Shadow + Diffuse + Specular Light + Shadow + Diffuse + Specular + AO

Figure A.3: Collage of Sponza Atrium images illustrating the incremental addi
tional of direct and indirect illumination effects, and the improved realism of the 
scene. 
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Direct Light Direct Light + Shadow

Light + Shadow + Diffuse Interreflection Light + Shadow + Specular Reflection 

Light + Shadow + Diffuse + Specular Light + Shadow + Diffuse + Specular + AO

Figure A.4: Collage of images of the Ruins scene illustrating the incremental addi
tional of direct and indirect illumination effects, and the improved realism of the 
scene. 
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vec4 unpackRGBCount ( u int val ) 
{ 

vec4 rgba ; 
//mask o f the approach quadrant o f the uint then s h i f t i t to the end
 
rgba . r = f l o a t ( ( val & 0 x000000FF ) ) ; // red
 
rgba . g = f l o a t ( ( val & 0 x0000FF00 ) >> 8 u ) ; // green
 
rgba . b = f l o a t ( ( val & 0 x00FF0000 ) >> 16 u ) ; // blue
 
rgba . a = f l o a t ( ( val & 0 xFF000000 ) >> 24 u ) ; // count
 
r e turn rgba ;
 

} 
uint packRGBCount ( vec4 val ) 
{ 

//Mask o f the l a s t 8 b i t s then s h i f t them to the appropr ia t e quadrant 
uint r = ( u int ( val . r ) & 0 x000000FF ) ;
 
uint g = ( u int ( val . g ) & 0 x000000FF ) << 8u ;
 
uint b = ( u int ( val . b ) & 0 x000000FF ) << 16 u ;
 
uint a = ( u int ( val . a ) & 0 x000000FF ) << 24 u ;
 

//OR the va lues toge the r 
r e turn ( r | g | b | a ) ; 

} 
void imageAtomicAverageRGBA8Custom ( l ayout ( r32ui ) coherent volatile uimage3D ←� 

voxels , i v e c 3 coord , vec3 nextVec3 ) 
{ 

uint nextUint = packRGBCount ( vec4 ( nextVec3 ∗255 .0 f , 1 ) ) ; 
uint prevUint ; 
uint currUint = 0 ; //packRGBCount( vec4 ( 0 , 0 , 0 , 99 9 ) ) ; 
vec4 currVec4 ; 

vec3 average ;
 
uint count ;
 

//Loop as long as d e s t i n a t i o n value g e t s changed by other threads
 
// compares currUint to nextUint
 
whi le ( ( prevUint = imageAtomicCompSwap ( voxels , coord , currUint , nextUint ) ) ←� 

!= currUint ) 
{ 

currUint = prevUint ; // s t o r e packed rgb average and count 
currVec4 = unpackRGBCount ( currUint ) ; // unpack s to r e d rgb average and count 

average = currVec4 . rgb / 255 .0 f ; // e x t r a c t rgb average
 
count = uint ( currVec4 . a ) ; // e x t r a c t count
 

//Compute the running average 
average = ( average ∗ count + nextVec3 ) / f l o a t ( count +1) ; 

//Pack new average and incremented count back i n t o a u int 
nextUint = packRGBCount ( vec4 ( average ∗255 .0 f , ( count +1) ) ) ; 

} 
} 

Figure B.1: Implementation of a moving average using imageAtomicCompSwap.
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vec4 anisoVoxelFetch ( vec3 pos , f l o a t lod , vec4 n ) 
{ 

vec4 sampleX = ( n . x < 0 .0 f ) ? textureLod ( VoxelsNegX , pos , lod ) : textureLod ( ←� 
VoxelsPosX , pos , lod ) ; 

vec4 sampleY = ( n . y < 0 .0 f ) ? textureLod ( VoxelsNegY , pos , lod ) : textureLod ( ←� 
VoxelsPosY , pos , lod ) ; 

vec4 sampleZ = ( n . z < 0 .0 f ) ? textureLod ( VoxelsNegZ , pos , lod ) : textureLod ( ←� 
VoxelsPosZ , pos , lod ) ; 

vec3 nSquared = n . xyz ∗ n . xyz ; 
vec4 filtered = nSquared . x ∗ sampleX + nSquared . y ∗ sampleY + nSquared . z ∗ ←� 

sampleZ ; 
r e turn filtered ; 

} 

Figure B.2: Anisotropic voxel sampling using the “ambient cube” method described 
in [MMG06]. 
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#d e f i n e shCoe f f vec4 (0 .2820947918 , −0.488602512 , 0 .488602512 , −0.488602512) 

vec4 shEvaluate ( vec3 dir ) 
{ 

r e turn shCoeff ∗ vec4 ( 1 . 0 f , dir . yzx ) ; 
} 

vec4 shVoxelFetch ( in vec3 pos , in f l o a t lod , in vec4 dir ) 
{ 

vec4 rSH , gSH , bSH ; 
rSH [ 0 ] = textureLod ( r0Tex , pos , lod ) . x ; 
rSH [ 1 ] = textureLod ( r1Tex , pos , lod ) . x ; 
rSH [ 2 ] = textureLod ( r2Tex , pos , lod ) . x ; 
rSH [ 3 ] = textureLod ( r3Tex , pos , lod ) . x ; 
gSH [ 0 ] = textureLod ( g0Tex , pos , lod ) . x ; 
gSH [ 1 ] = textureLod ( g1Tex , pos , lod ) . x ; 
gSH [ 2 ] = textureLod ( g2Tex , pos , lod ) . x ; 
gSH [ 3 ] = textureLod ( g3Tex , pos , lod ) . x ; 
bSH [ 0 ] = textureLod ( b0Tex , pos , lod ) . x ; 
bSH [ 1 ] = textureLod ( b1Tex , pos , lod ) . x ; 
bSH [ 2 ] = textureLod ( b2Tex , pos , lod ) . x ; 
bSH [ 3 ] = textureLod ( b3Tex , pos , lod ) . x ; 

vec4 shColor ;
 
vec4 shCoeff = shEvaluate(− normal ize ( dir . xyz ) ) ;
 
shColor . r = clamp ( dot ( rSH , shCoeff ) , 0 . 0 , 1 . 0 ) ;
 
shColor . g = clamp ( dot ( gSH , shCoeff ) , 0 . 0 , 1 . 0 ) ;
 
shColor . b = clamp ( dot ( bSH , shCoeff ) , 0 . 0 , 1 . 0 ) ;
 
shColor . a = textureLod ( aTex , pos , lod ) . a ;
 

r e turn shColor ; 
} 

Figure B.3: Spherical harmonic voxel sampling method described in Section 5.2.3.
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vec4 coneTrace ( vec3 origin , vec3 nS , vec3 dir , f l o a t coneRatio , f l o a t maxDist , ←� 
f l o a t aoDist , f l o a t voxSize , f l o a t volDim , f l o a t fMin , f l o a t sinHalfAngle ) 

{ 
vec4 accum = vec4 (0 ) ; 
f l o a t opacity = 0 .0 f ; 

f l o a t NdotR = dot ( nS , dir ) ; 
f l o a t invNdotR = 1 / NdotR ; 

f l o a t h = fMin ∗ voxSize ; 
f l o a t d0 = h ∗ invNdotR ; 
f l o a t r0 = d0 ∗ sinHalfAngle ; 

f l o a t startDist = d0−r0 ; 
f o r ( f l o a t dist = startDist ; dist <= maxDist && accum . w < 1 . 0 ; ) 
{ 

f l o a t sampleRadius = coneRatio ∗ dist ; 
f l o a t sampleDiameter = max ( 2 . 0 f∗ sampleRadius , voxSize ) ; 
f l o a t sampleLOD = l og2 ( sampleDiameter ∗ volDim ) ; 
vec3 samplePos = origin + dir ∗ ( dist + sampleRadius ) ; 
vec4 sampleValue = voxelFetch ( samplePos , sampleLOD , vec4 ( dir , 1 ) ) ; 
f l o a t sampleWeight = 1 .0 f − accum . w ; 
accum += sampleValue ∗ sampleWeight ; 
dist += sampleDiameter ; 
opacity = ( dist < aoDist ) ? accum . w : opacity ; 

} 
r e turn vec4 ( accum . xyz ,1− opacity ) ; 

} 

Figure B.4: Shader code for a generic voxel cone tracing routine. Note, the 
voxelFetch function must be implemented appropriately for the selected voxel 
storage format. 
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vec4 diffuseConeTrace60 ( vec3 origin , vec3 nS , vec3 dir , f l o a t coneRatio , f l o a t ←� 
maxDist , f l o a t aoDist , f l o a t voxSize ) 

{ 
vec4 accum = vec4 (0 ) ; 
f l o a t opacity = 0 .0 f ; 
vec3 samplePos ; 
vec4 sampleValue ; 
f l o a t sampleWeight ; 
f l o a t sampleRadius = 0 .5 ∗ voxSize ; 
f l o a t sampleLOD = 0 ; 
f o r ( f l o a t dist = voxSize ; dist <= maxDist && accum . w < 1 . 0 ; ) 
{ 

samplePos = origin + dir ∗ dist ; 
sampleValue = voxelFetch ( samplePos , sampleLOD , vec4 ( dir , 1 ) ) ; 
sampleWeight = 1 .0 f − accum . w ; 
accum . xyz += sampleValue . xyz ∗ sampleWeight ; 
accum . w += sampleValue . w ∗ sampleWeight ; 
sampleLOD += 1 .0 f ; 
sampleRadius ∗= 2 .0 f ; 
dist ∗= 2 .0 f ; 
opacity = ( dist < aoDist ) ? accum . w : opacity ; 

} 
r e turn vec4 ( accum . xyz ,1− opacity ) ; 

} 

Figure B.5: Shader code for a specialized 60° diffuse cone tracing routine. Note, 
the voxelFetch function must be implemented appropriately for the selected voxel 
storage format. 
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