

AN ABSTRACT OF THE THESIS OF

Randall Rauwendaal for the degree of Doctor of Philosophy in Computer Science

presented on August 26, 2013.

Title: Voxel Based Indirect Illumination using Spherical Harmonics

Abstract approved:

Michael J. Bailey

Realistic (ideally photorealistic) real-time rendering has remained an elusive goal in

computer graphics. While photorealistic rendering has certainly been achieved at

the expense of tremendous computational resources and corresponding rendering

times; real-time rendering typically must accept a great number of compromises to

achieve adequate performance, such as aliasing artifacts, the absence of secondary

illumination effects such as diffuse inter-reflection and realistic specular reflections,

and a lack of geometric detail. This dissertation demonstrates solutions which re

duce the computational cost of solving the rendering equation through a series of

strategic approximations which are well suited to the massively parallel nature of

current consumer GPUs and their integrated filtering hardware. Firstly, we dis

cretize scene geometry, using a novel and highly efficient voxelization technique.

From the voxelization, we efficiently generate a hierarchical representation of scene

geometry. We then use this hierarchical representation as a proxy for computation

of indirect illumination using a technique called Voxel Cone Tracing. Finally we

explore the storage of both isotropic and anisotropic functions within our hierar

chical scene proxy, and evaluate the usage of low order spherical harmonics as a

more suitable approximation of radiance.

©Copyright by Randall Rauwendaal

August 26, 2013

All Rights Reserved

Voxel Based Indirect Illumination using Spherical Harmonics

by

Randall Rauwendaal

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented August 26, 2013

Commencement June 2014

Doctor of Philosophy thesis of Randall Rauwendaal presented on
August 26, 2013.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Randall Rauwendaal, Author

ACKNOWLEDGEMENTS

I would like to thank Intel Corporation’s Visual Computing Academic Program

for their generous funding. My advisor, Mike Bailey, for finding funding for me

throughout my graduate career. My old neighbor, Geoff Dalgas, of StackOverflow,

for donating an old, yet still powerful, computer to the cause. And most of all

I would like to thank my wife, Leslie Rauwendaal, for her infinite patience and

valuable input, without which, this never would have been possible.

Much of the decision to attend graduate school stemmed from the wonderful time

I spent as an undergraduate researcher at the Institute for Data Analysis and

Visualization at UC Davis. It was a place of open collaboration and illuminating

discussions. Unfortunately, my graduate career proved to be a much different

experience; it was ever more isolating and ever more trying. The fact that this

dissertation exists at all is a testament to an unrelenting determination that I

inherited from my wonderful parents, who would both stubbornly claim that such

a trait came from their side of the family. It is but one of the many positive traits

I owe them, along with a sometimes inconvenient tendency towards forthrightness

and honesty.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Outline . 4

2 Background 6

2.1 Light Transport Theory . 6

2.1.1 The Nature of Light . 7

2.1.2 Radiometry . 8

2.1.3 Materials . 12

2.1.4 The Rendering Equation . 14

2.1.4.1 Hemispherical Formulation 15

2.1.4.2 Area Formulation 17

2.1.4.3 Direct and Indirect Illumination 19

2.2 Spherical Harmonics . 21

2.2.1 Projection and Expansion 24

2.2.2 Properties . 25

2.2.2.1 Convolution . 25

2.2.2.2 Orthonormality . 26

2.2.2.3 Rotational Invariance 26

2.2.2.4 Double Product Integral 27

2.2.2.5 Double Product Projection 28

2.3 GPU Evolution . 29

2.3.1 API Evolution . 32

3 Related Work 35

3.1 Early Global Illumination . 35

3.1.1 Ray Tracing . 36

3.1.2 Radiosity . 36

3.2 Evolution of Global Illumination . 37

3.2.1 GPU Ray Tracing . 37

3.2.2 GPU Radiosity . 38

3.2.3 Hierarchical Radiosity . 39

3.2.4 Instant Radiosity . 41

TABLE OF CONTENTS (Continued)

Page

3.2.5 Lightcuts . 42

3.2.6 Photon Mapping . 43

3.3 Advanced Global Illumination . 46

3.3.1 Advanced Hierarchical Methods 47

3.3.2 Precomputed Radiance Transfer 48

3.3.3 (Ir)Radiance Caching . 51

3.3.3.1 Spherical Function Representation 54

3.3.4 Ambient Occlusion . 54

3.3.5 Implicit Visibility . 55

3.4 Volumetric Techniques . 57

3.5 Light Propagation Volumes . 59

3.6 Voxel Cone Tracing . 61

3.7 Voxelization . 63

4 Voxelization 66

4.1 Voxelization . 67

4.1.1 Triangle-parallel voxelization 71

4.1.2 Fragment-parallel voxelization 75

4.1.3 Hybrid Voxelization . 84

4.1.4 Voxel-List Construction . 89

4.1.5 Attribute Interpolation . 91

4.2 Voxelization Performance . 92

4.3 Discussion of Voxelization . 94

5 Voxel Storage, Sampling, & Mipmapping 96

5.1 Voxel Storage . 97

5.1.1 Isotropic Voxel Storage . 97

5.1.2 Anisotropic Voxel Storage 99

5.1.3 Spherical Harmonic storage 101

5.1.4 Voxelization Performance & Costs 105

5.2 Voxel Sampling . 105

5.2.1 Isotropic Sampling . 105

5.2.2 Anisotropic Sampling . 107

5.2.3 Spherical Harmonic Sampling 107

TABLE OF CONTENTS (Continued)

Page

5.3 Voxel Mipmapping . 109

5.3.1 Isotropic Mipmapping . 109

5.3.2 Anisotropic Mipmapping . 110

5.3.3 Spherical Harmonic Mipmapping 111

5.4 Sparse Mipmapping Optimizations 118

6 Voxel Based Illumination 122

6.1 Voxel Cone Tracing . 122

6.1.1 Avoiding self intersection . 125

6.1.2 Alternate Diffuse Cone Tracing 127

6.2 Soft Shadows . 128

6.3 Ambient Occlusion . 132

6.4 Diffuse Interreflection . 135

6.5 Specular Reflection . 139

7 Voxel Based Pipeline 145

7.1 Direct Illumination . 146

7.2 Indirect Illumination . 149

7.3 Final Rendering & Results . 149

8 Conclusions and Future Work 154

Bibliography 158

Appendices 176

A Additional Images . 177

B Shader Code . 182

LIST OF FIGURES

Figure	 Page

1.1	 On the left a photograph of the Cornell Box, and on the right a
simulated rendering of the same box. (Image courtesy of Cornell
University) . 2

1.2	 Image demonstrating several global illumination effects; multiple
diffuse and specular bounces, caustics and scattering. (Image cour
tesy of Tobias Ritschel [RDGK12]). 3

2.1	 Flux, shown above, measures the amount of light falling on a surface
area from all directions and is measured in watts [W], while radi
ant exitance (radiosity) measures the amount of light (flux) leav
ing a point in all directions and is measured in watts per meter
squared[W · m−2]. 8

2.2	 Irradiance integrates the total incident light over the hemisphere Ω
and is measured in watts per meter squared [W · m−2]. 9

2.3	 Radiance expresses the amount of light arriving at a point from a
differential solid angle and has units [W · sr−1 · m−2]. 10

2.4	 The different forms of the bidirectional scattering distribution func
tion. Above, the bidirectional reflection distribution function (BRDF)
describes the light reflected at a point of the surface, while below, the
bidirectional transmission distribution function (BTDF) describes
the light transmitted through the material (Original image courtesy
of Wikipedia). 11

2.5	 A perfectly diffuse, or Lambertian, BRDF. 13

2.6	 A perfectly specular BRDF, or “mirror.” 14

2.7	 Most materials exist somewhere between perfectly diffuse and per
fectly specular, we refer to such as “glossy” BRDFs. 15

2.8	 The exitant radiance at a point on a surface depends on the in
cident radiance over the hemisphere. The incident radiance field
resembles a “fisheye” view from the point, while the exitant radi
ance is the integral of this value of the entire hemisphere. (Original
image courtesy of Wojiech Jarosz [Jar08]). 16

LIST OF FIGURES (Continued)

Figure	 Page

2.9	 The geometry term in the area formulation of the rendering equa
tion describes the relation of energy transfer between differential

surfaces, dAx and dAy, based on their relative angle and distance. . 17

2.10 The first 5 SH bands plotted as unsigned spherical functions by

distance from the origin and by colour on a unit sphere. Green

(light gray) are positive values and red (dark gray) are negative.

Image courtesy of [Gre03]. 23

2.11 The Kepler GK110 (Titan) die.	 The Titan GPU has 2,688 shader

cores and uses over 7.1 billion transistors. 30

2.12 Increase in the number of “Shader Processors” in Nvidia GPUs over

time. Credit: [Gai12] . 31

2.13 Comparison of GFLOPS available in successive iterations of Nvidia

and Intel processors. Credit: [Gai12] 31

2.14 Bandwidth comparison of Intel CPUs and Nvidia GPUs.	 Credit:

[Gai12] . 32

2.15 The modern graphics “pipeline,” which now more closely resembles

a subway system map. (Image courtesy of the Khronos Foundation) 34

3.1	 A comparison of direct illumination only on the left vs. global illu
mination on the right. Image credit: [DSDD07]. 39

3.2	 An illustration of hierarchical radiosity refinement. Credit: [HSA91]. 40

3.3	 VPLs for indirect illumination using Instant Radiosity, the VPL in

the middle represents second bounce indirect illumination. Image

credit: [Kel97]. 42

3.4	 Light tree and three example cuts, the highlighted areas represent

regions where error is small. Image credit: [WFA∗05]. 44

3.5	 Images generated by the Coherent Shadow Map approach. Image

credit: [RGKM07]. 51

3.6	 (Ir)Radiance Gradients. Image credit: [KGW∗07]. 53

LIST OF FIGURES (Continued)

Figure	 Page

3.7	 (a) Operator formalization of the rendering equation. (b) Reformu
lation using unoccluded transport, creating antiradiance to compen
sate for extraneous transport. Image credit: [DSDD07]. 57

3.8	 Eikonal adaptive wavefront propagation. Image credit: [IZT∗07]. . . 58

3.9	 The rendering pipeline from [SZS∗08]. 60

3.10 (a) Each cell (voxel) of the LPV stores the directional light inten
sity that is propagated to its axial neighbors; (b) incident flux is
computed for each face of the destination voxel; (c) to account for
occlusion a separate “geometry volume” is used, offset by half from
the voxel centers. Image credit: [KD10]. 60

3.11 Illustration of the sampling scheme employed by voxel cone tracing,
the cone radius at a sample point indicates the depth in the octree
to sample from. Image credit: [CNS∗11] 62

4.1	 The XYZ RGB Asian Dragon voxelized at 1283, 2563, and 5123

resolutions. 66

4.2	 pmin and pmax for 26-separable voxelization on left, and for 6-separable
voxelization on right. Note that for 6-separable voxelization we are
actually testing for intersection of the diamond shape inscribed in
side the voxel as opposed to the entire voxel in the 26-separable
case. 69

4.3	 pei for 26-separable voxelization on the left, and for 6-separable
voxelization on the right. Similar to the plane-overlap test, the
6-separable voxelization is actually testing against the diamond in
scribed inside the voxel’s planar projection. 69

4.4	 Pseudocode for a conservative (26-separable) computational vox
elization, this assumes that the inputs, v0, v1, v2, bmin, and bmax,
are pre-swizzled, while unswizzle represents a permutation matrix
used to get the unswizzled voxel location. 72

LIST OF FIGURES (Continued)

Figure	 Page

4.5	 Pseudocode for a thin (6-separable) computational voxelization, this
assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled,
while unswizzle represents a permutation matrix used to get the
unswizzled voxel location. 73

4.6	 Performance of a naïve triangle-parallel voxelization. Exhibits poor
performance on scenes containing large polygons. Performance de
creases predictably with increase in voxel resolution. 75

4.7	 Performance of fragment-parallel voxelization. This exhibits poor-
performance in scenes with large numbers of small triangles. Per
formance degradation is exacerbated as the ratio of voxel-size to
triangle-size increases. 77

4.8	 Naïve rasterization on input geometry can lead to gaps in the vox
elization. This can be solved in two ways, the center image demon
strates swizzling the vertices of the input geometry, while the image
on the right demonstrates changing the projection matrix. 78

4.9	 The largest component of the normal n of the original triangle de
termines the plane of maximal projection (XY, YZ, or ZX) and the
corresponding swizzle operation to perform. 79

4.10 Various conservative rasterization techniques required in order to
produce a “gap-free” voxelization. The first two images are from
[HAMO05], the leftmost image shows the approach of expanding tri
angle vertices to size of pixel, and tessellating the resultant convex-
hull. The middle image simply creates the minimal triangle to en
compass the expanded vertices, and relies on clipping to occur later
in the pipeline. The rightmost approach is from [HHW09], and sim
ply expands the triangle by half the length of the pixel diagonal and
also relies on clipping to remove unwanted pixels. 80

¯4.11 Sub-voxel sized triangle exhibiting thread utilization of only 8.3%
after triangle dilation, note, that this can actually get much worse
depending on the triangle configuration. 82

4.12 Thin (6-separable) voxelization of the Conference Room scene illus
trating false positives (in red) resulting from a naïve conservative
rasterization based voxelization. 82

LIST OF FIGURES (Continued)
Figure	 Page

4.13 Comparison of the relative performance of Triangle-parallel and
Fragment-parallel techniques. Note, where one technique performs
poorly, the other performs well. 83

4.14 A simple classification routine run before the voxelization stage al
lows the creation of a hybrid voxelization pipeline and utilizes the
optimal voxelization approach according to per-triangle character
istics. 84

4.15 Our final hybrid voxelization implementation mitigates the cost pro
cessing the input geometry twice by immediately voxelizing input
triangles classified as “small” and deferring only those triangles con
sidered to be “large.” . 85

4.16 Initially at zero, all triangles are classified as “large” and therefore
voxelized by the fragment-parallel shader. As the cutoff value (mea
sured in voxel area) increases, triangles are classified and assigned
to either the triangle-parallel or fragment-parallel approaches. As
the cutoff continues to increase, performance exhibits a stair-step
pattern as triangles are reclassified. Eventually all triangles are
classified as “small” and performance reverts to that of the triangle
parallel approach. 87

4.17 Logarithmic performance graph of the hybrid voxelization technique
displaying a lower range of cutoff values such that the optimal cutoff
can be clearly discerned. 88

4.18 Full pipeline including shader stages. Note that while there are two
“passes” only a very small subset of the geometry, that is classified
as “large,” is processed twice. 90

5.1	 Images of the isotropic voxelization output using the builtin imageAtomicMax
functionality on the left vs the emulated imageAtomicAverage on
the right. Note that the imageAtomicMax version has a tendency
to saturate the voxel color, but overall the result is quite accept
able. Both voxelization are performed using the fragment-parallel
voxelization approach at a voxel resolution of 5123. 98

LIST OF FIGURES (Continued)
Figure	 Page

5.2	 Anisotropic voxels initialized based on dominant normal direction
and visualized as spheres using the method described in Section
5.2.2. 100

5.3	 Visualization of the spherical harmonic functions stored at each
voxel location. Each function is represented by a raytraced sphere
and the color values are sampled from the spherical harmonic func
tion at each location based on the normal. The Crytek-Sponza scene
is shown in the upper left, the Sibenik Cathedral is shown in the
upper right, while the Conference Room is shown in the lower left
and the Ruins scene lower right. Note, spheres are unlit and unshaded.103

5.4	 Performance of a fragment parallel voxelization for several computer
graphics scenes. In general, the more complex storage formats have
a higher voxelization cost. Also, the emulated image atomic av
erage functionality can be severely detrimental to performance de
pending on degree of thread contention during voxelization. For
example, the Conference Room scene relies on pure triangle density
(as opposed to normal maps) to add additional detail to the scene,
which causes severe busy-waiting in the atomic average’s spin-lock.
Note, that the RGBA8 spherical harmonic voxelization outperforms
isotropic voxelization, and is competitive with isotropic voxelization. 106

5.5	 A 2D anisotropic voxel with per-face color values. Image courtesy
of [Mit12]. 108

5.6	 Illustration of isotropic voxel mipmapping, note the emergence of
the red-green wall problem. 109

5.7	 Illustration of the results of directionally dependent anisotropic mipmap
ping. 110

5.8	 2D projections onto each of the faces of a higher level (parent) voxel
by the child voxels. 112

5.9	 All 6 projections for the top-left-front voxel. Voxel centers are blue
spheres, SH projections are in green, while ddface vector are shown
in blue traveling from the voxel center to the face center (in red).
Note, the ddface vectors in this diagram are not normalized. 113

LIST OF FIGURES (Continued)

Figure	 Page

5.10 Implementation of an optimized voxel-mipmapping scheme which
relies on the output of active-voxel-lists at each stage of the voxel
hierarchy. 119

5.11 Combined performance of voxelization and mipmapping with active-
voxel-lists disabled and enabled for several scenes and voxel storage
formats. Note that for all voxel formats (besides isotropic) there
is a net gain in performance for all scenes. Furthermore, for the
spherical harmonic cases the active-voxel-list can be used in the
post-voxelization step (normalization for 12xR32F and transfer for
3xRGBA8) resulting in an improvement in overall voxelization time
as well. 121

6.1	 Geometric construction of samples, p0, and p1 along a cone of aper
ture θ degrees in direction dω. Note that the previous distance and
radius is used to find the next sample location. 123

6.2	 Illustration of the voxel cone tracing technique and the correspon
dence between the sampling radius of the cone and the quadrilin
early interpolated voxel value. 124

6.3	 Illustration of technique . 126

6.4	 Geometric construction of the first three samples using the cone
tracing technique specialized to diffuse cones at 60°, note the overlap
in samples help to prevent skipping through thin geometry. 128

6.5	 Shadow cone tracing performance of several scenes, varying the cone
aperture by increments of 5°. For the Sponza and Ruins scenes, the
light source is above the scene, while for the Sibenik and Conference
Room scenes, the light source is inside the scene. 130

6.6	 Voxel cone traced soft shadows of the column in the Sibenik Cathe
dral scene. Cone apertures vary from 0°, 2°, 4°, and 6°. Note that
even the 0° cone aperture results in a slight soft shadowing effect due
to the hardware based interpolation. This behavior could be mod
ified by changing the hardware texture filtering parameters, but it
is hard to imagine a scenario in which doing so would be desirable.
Note, this scene exhibits no global illumination effects. 131

LIST OF FIGURES (Continued)

Figure	 Page

6.7	 A set of cones emanating from the surface point x, and oriented
around the normal dn is used to compute ambient occlusion by cal
culating an “accessibility value” indicating the presence of nearby
geometry. 135

6.8	 Examples of ambient occlusion computed for several classic com
puter graphics scenes. 136

6.9	 Ambient occlusion cone tracing performance for several classic com
puter graphics scenes at 2563 and 5123 voxel resolutions. Note, that
the post voxelization cost of tracing different scenes is largely in
variant with respect to scene geometry. 137

6.10 Much like ambient occlusion (cf. Figure 6.7), a set of cones ema
nating from the surface point x, and oriented around the normal dn
can be used to compute diffuse interreflection as well by accumulat
ing the reflected illumination off of nearby geometry from the voxel
based proxy. 139

6.11 Comparison of diffuse interreflection techniques, the generic cone
tracing technique at 60° is on the left, while the specialized technique
for diffuse cones of 60° is on the right. We observe that the special
ized cones seem to do slightly better at avoiding self-illumination,
yet exhibit somewhat brighter highlights. 140

6.12 Timing data of the diffuse interreflection methods for the Sponza
scene at a voxel resolution of 2563 comparing diffuse cone trac
ing performance for the three implemented voxel methods and the
generic vs. specialized cone tracing methods. The specialized cone
tracing method provides a performance increase across all imple
mentation, and in the case of the spherical harmonic method a
speedup of over 50%. Note, the compact spherical harmonic stor
age (RGBA8) is quite competitive with isotropic and anisotropic trace
times. 141

6.13 A specular cone is reflected around the normal. The cone aperture
can be determined by the glossiness of the material. 142

LIST OF FIGURES (Continued)

Figure	 Page

6.14 Images of specular tracing in the Crytek Sponza scene. From left to
right and top to bottom cone apertures are 0, 5, 10, 15, 20, and 25
degrees respectively. Dark surfaces are not specularly reflective. . . 143

6.15 Comparison of tracing times for specular cones for the three imple
mented voxel formats. Tracing time for the specular cones decreases
rapidly as the cone aperture increases. 144

7.1	 Illustration of the full voxel based lighting pipeline. We construct
a filtered mipmap hierarchy of direct illumination values, which is
then used to calculate the per-pixel indirect illumination component
to accumulate with the direct illumination computed in a deferred
context. 145

7.2	 (a) Demonstrates the improper coverage of a shadow map with in
sufficient resolution, the result can be seen in (b) credit: [Yeu13].
By sampling the shadow map from the voxel, as in (c),we avoid
shadow coverage gaps, as evidenced in (d) (which also has direct
lighting information). 147

7.3	 Full global illumination final renderings for the Sponza Atrium and
the Ruins. The images are rendering using isotropic, anisotropic,
and spherical harmonic voxels from the top row to the bottom, re
spectively. 151

7.4	 Complete profiles of the final rendering times for the Sponza Atrium
scene and the Ruins scene, for the isotropic, anisotropic, and spher
ical harmonic storage formats. 153

LIST OF TABLES

Table	 Page

2.1	 The polynomial forms of the spherical harmonic basis functions of
the first 3 bands (m = 0 . . . 2 and l = −2 . . . 2). 24

4.1	 Running time (in ms) for different voxelization approaches, blue
indicates the fastest voxelization method. Voxelizations are binary
and performed into a single component dense 3D texture. The Large
Triangle cutoff is listed as “na” since there are no suitable triangles
to be reassigned. 93

LIST OF APPENDIX FIGURES

Figure	 Page

A.1	 Comparison of the quality of specular cone tracing for the three voxel
formats for the Sponza scene at 2563, from top to bottom istropic,
anisotropic, and spherical harmonic voxel formats respectively. . . . 178

A.2	 Comparison of the quality of diffuse cone tracing for the three voxel
formats for the Sponza scene at 2563, from top to bottom istropic,
anisotropic, and spherical harmonic voxel formats respectively. Im
ages with diffuse cones traced using the generic method are on the
left, while images with diffuse cones traced using the specialized
method are on the right. 179

A.3	 Collage of Sponza Atrium images illustrating the incremental addi
tional of direct and indirect illumination effects, and the improved
realism of the scene. 180

A.4	 Collage of images of the Ruins scene illustrating the incremental ad
ditional of direct and indirect illumination effects, and the improved
realism of the scene. 181

B.1	 Implementation of a moving average using imageAtomicCompSwap. . 183

B.2	 Anisotropic voxel sampling using the “ambient cube” method de-
scribed in [MMG06]. 184

B.3	 Spherical harmonic voxel sampling method described in Section 5.2.3.185

B.4	 Shader code for a generic voxel cone tracing routine. Note, the
voxelFetch function must be implemented appropriately for the
selected voxel storage format. 186

B.5	 Shader code for a specialized 60° diffuse cone tracing routine. Note,
the voxelFetch function must be implemented appropriately for
the selected voxel storage format. 187

Chapter 1: Introduction

We are confronted with a world rich in visual information. Everyday we perceive

complex and beautiful interactions of light and materials played out in their ex

pression of intricate optical phenomena. It is our aim to conduct research towards

the simulation of these effects using physical models to not only produce con

vincing results, but to do so at interactive rates. Rendering algorithms have long

been able to produce realistic images, see Figure 1.1, and with the steady increase

in computational resources, have been able to render scenes with greater detail

and complexity. But real-time simulation of complex, fully dynamic scenes, has

remained an elusive goal.

1.1 Motivation

Our motivation is present in the beauty of the world around us. We are compelled

to attempt to synthesize all the complex interactions demonstrated in Figure 1.2

that nature computes implicitly. To this end we must simulate both direct and

indirect light interactions. That is, the light that falls directly on a point in the

scene and the light that may have scattered off of any other object anywhere else

in the scene to arrive at the same point. The sum of both direct and indirect light

interactions results in Global Illumination.

2

Figure 1.1: On the left a photograph of the Cornell Box, and on the right a
simulated rendering of the same box. (Image courtesy of Cornell University)

The difficulty in computing global illumination comes from the fact that light

can bounce off virtually all objects, thus to compute the color at a point in the

scene we must integrate over all incident illumination. This is the approach as

formulated by the Rendering Equation by Kajiya [Kaj86], which has come to be

the defining equation for physically based rendering and Global Illumination, in

deed all physically based rendering research is generally about solving this single

equation. However, the Rendering Equation is extremely hard to solve, and likely

impossible for many scenes. That the Rendering Equation is difficult to solve is due

to several reasons; first, it requires global information about the scene (all geome

try, materials, and light information), second, it is a recurrence relation describing

a potentially infinite recursion, and third, it is an integral over a continuous space.

Thus, it follows that most attempts to “solve” the rendering equation are really

attempts to find an approximate solution, and that these approximate solutions

are often based upon the discretization of continuous domains, such as lighting,

3

Figure 1.2: Image demonstrating several global illumination effects; multiple dif
fuse and specular bounces, caustics and scattering. (Image courtesy of Tobias
Ritschel [RDGK12]).

scene geometry, and material properties.

The costs associated with global illumination have long prevented it from being

employed in the context of real-time rendering. Recently, however, as the power

of modern GPUs has continued to increase at a rate that defies Moore’s law, and

as rendering algorithms are adapted to their massively parallel architectures, we

are beginning to see real-time simulation of effects previously relegated to slow,

offline renderers. These effects, such as soft shadows, diffuse interreflection (color

bleeding), caustics, and refractions all greatly enhance the visual perception and

realism of a scene. Our work has focused on rendering techniques which enable

these indirect illumination techniques while maintaining framerates suitable for

real-time rendering.

4

1.2 Contributions

We make contributions in the usage of spherical harmonics as a representation for

the exitant radiance of discretized scene geometry, and also detail methods of con

structing an accurate hierarchy of approximate radiance values suitable for efficient

sampling using cone tracing methods. Additionally, we build upon our recently

developed hybrid computational voxelization techniques (see [Rau12]), and detail

their extension towards the inclusion of appropriate voxel attributes. We detail

a new technique for mipmapping a hierarchy of spherical harmonic values. We

detail two methods for performing voxel cone tracing, each suitable to a particular

component of indirect illumination. Further, we construct an efficient rendering-

pipeline which enables high-quality rendering with indirect illumination of fully

dynamic scenes, including non-static geometry, lighting, and materials.

1.3 Outline

This dissertation is organized as follows. Background information concerning the

theory of light transport is described in Chapter 2. We detail the components of the

rendering equation, (see equation 2.10), and their application towards the accurate

simulation of the interaction of light and materials. Additionally, we review useful

properties of Spherical Harmonics (Section 2.2), and discuss the evolution of GPU

hardware in Section 2.3. We review related real-time global illumination work in

Chapter 3, as well as related work in voxelization (Section 3.7)

In Chapter 4, we describe the process of efficiently discretizing scene geom

5

etry, using our novel voxelization approach. Following voxelization, we discuss

voxel storage formats, voxel sampling techniques, and voxel mipmapping strate

gies (Chapter 5). Chapter 5 is divided into a discussion of: the necessary voxel

attributes to enable both isotropic and anisotropic radiance storage, and the adap

tations required to enable these in our voxelization approach (Section 5.1); ap

propriate sampling strategies for each voxel storage format (Section 5.2); and a

description of an optimized mipmapping approach and how to create a hierarchy

of radiance values (Section 5.3).

Chapter 6 provides a straightforward introduction to the geometry of voxel

cone tracing, followed by its application to several notable illumination effects.

These include soft shadows (Section 6.2), ambient occlusion(Section 6.3), diffuse

interreflection (Section 6.4), and glossy specular reflections (Section 6.5).

Chapter 7 pulls together all the effects from Chapter 6 and discusses the process

used to create a final voxel based rendering pipeline. Timings and results for

the final image generation are also presented in this chapter, while timings for

individual effects are presented in the associated sections of Chapter 6. Additional

images are also listed in Appendix A to further corroborate presented results, while

snippets of useful shader code are listed in Appendix B.

Finally, in Chapter 8, we present our conclusions, discuss several directions for

further optimizations and numerous potential avenues for future research based

upon the foundation of this work.

6

Chapter 2: Background

In this Chapter we introduce the background materials that form the building

blocks for this thesis. In Section 2.1 we discuss light transport theory as it applies

to global illumination rendering. In Section 2.1.3 we discuss the reflectance models

used to define materials. In Section 2.1.4 we discuss the rendering equation, from

which virtually all rendering research springs. In Section 2.2 we review spherical

harmonics as they are an integral component of the research conducted in this

dissertation. Finally, in Section 2.3 we discuss the evolution of GPU architecture

along with the APIs that enable massively parallel graphics computation.

2.1 Light Transport Theory

The goal of rendering algorithms is to produce synthetic images of virtual scenes

described by three-dimensional geometry, coupled with lighting and material in

formation. Global illumination rendering algorithms create these images via a

physically accurate simulation of how light propagates through the virtual world.

This simulation is described by light transport theory which details how light, or

energy, is emitted from light sources, scattered by elements in the scene, and ul

timately arrives at the viewer, or “camera,” all of which is neatly encompassed

by the rendering equation, (see Section 2.1.4). In this section, we first explore

7

the necessary background and develop the terminology needed to understand light

transport and the rendering equation, and discuss the representation of materials

using the bidirectional scattering distribution function.

2.1.1 The Nature of Light

In computer graphics we make many simplifying assumptions about the nature of

light. For instance, while the wavelength of light determines its perceived color,

typically we concern ourselves only with the wavelengths corresponding to the

primary colors red, green, and blue (RGB). This simplification precludes the phys

ically accurate simulation of certain effects such as dispersion and fluorescence.

Additionally, we typically rely upon the simplest model of light, that of ray optics;

there also exists models in increasing order of complexity: wave optics, electromag

netic optics, and quantum optics [ST07]. The model of ray optics comes with the

simplifying assumption that light traverses space instantaneously, which dictates

that light can only be emitted, reflected, and transmitted. Despite this, we can

still accurately reproduce a wide range of physical phenomena.

8

2.1.2 Radiometry

Figure 2.1: Flux, shown above, measures the amount of light falling on a surface
area from all directions and is measured in watts [W], while radiant exitance (ra
diosity) measures the amount of light (flux) leaving a point in all directions and is
measured in watts per meter squared[W · m−2].

Radiometry describes the physical measurement of electromagnetic radiation. In

the context of this dissertation we use the term, light, to describe the visible spec

trum of electromagnetic waves. Radiometric units are useful in describing global

illumination algorithms in that they define a common terminology for the physical

quantities of light. In this section we review the basic radiometric quantities.

The first radiometric quantity, radiant energy, denoted Q, describes the energy

of light in joules [J]. Differentiating radiant energy in time leads us to radiant flux

(see Figure 2.1), denoted Φ = dQ , which expresses the amount of energy emitted
dt

by a surface over time in watts [W]. When buying a light bulb, its listed wattage

also describes its radiant flux [W = J · s−1]. Integrating radiant flux over time

leads back to radiant energy, whereas differentiating radiant flux in area leads to

irradiance, and differentiating in solid angle leads to intensity.

9

Figure 2.2: Irradiance integrates the total incident light over the hemisphere Ω
and is measured in watts per meter squared [W · m−2].

Irradiance, denoted E, expresses the amount of incident power hitting a surface

per unit area. Hence, it has units of [W · m−2]. Integrating radiance over area leads

back to flux, while differentiating irradiance in direction will lead to radiance. The

term irradiance implies a measure of the flux arriving at a surface location x.

Conversely, the terms radiant exitance (M) or radiosity (B) are used instead if the

flux is leaving a surface. More explicitly:

W

E (x) =
dΦin (x) (2.1)
dA (x) m2

(x) W

M (x) = B(x) =
dΦout (2.2)
dA (x) m2

Radiance, denoted L, is perhaps the most important radiometric quantity for

global illumination. It is closest to what we commonly conceive of as “light.”

Radiance expresses how much light arrives from a differential direction ddω onto a

10

Figure 2.3: Radiance expresses the amount of light arriving at a point from a
differential solid angle and has units [W · sr−1 · m−2].

hypothetical differential area perpendicular to that direction dA⊥. Radiance has

units of [W · sr−1 · m−2]. This five-dimensional function of position and direction

can be expressed as:

ω) =
d2Φ (x, dω) d2Φ (x, dω) d2Φ (x, dω) W

L (x, d = = (2.3)
ddωdA⊥ (x) (dn · ωd) dA (x) cos θddωdA (x) m2sr

In this dissertation we employ the notation L (x ← dω) for incident radiance

that arrives at a point x from direction dω, and similarly the notation L (x → dω) for

exitant radiance leaving x in direction dω. The radiance invariance law states that

radiance does not change along a ray in a vacuum, that is L (x ← dω) = L (x → dω).

We can express the previously defined terms, irradiance and radiosity (radiant

exitance) in terms of radiance as:

ˆ ˆ
E (x) = L (x ← ωd) (dn · ωd) ddω = L (x ← dω) cos θddω (2.4)

Ω Ω

11

Figure 2.4: The different forms of the bidirectional scattering distribution function.
Above, the bidirectional reflection distribution function (BRDF) describes the light
reflected at a point of the surface, while below, the bidirectional transmission
distribution function (BTDF) describes the light transmitted through the material
(Original image courtesy of Wikipedia).

ˆ ˆ
M (x) = B (x) = L (x → ωd) (dn · ωd) ddω = L (x → dω) cos θddω (2.5)

Ω Ω

Where Ω is the visible hemisphere, intuitively we are integrating over all incident

radiance adjusted for projected area.

�

12

2.1.3 Materials

The interaction of lights and surfaces is a crucial component of rendering. The

materials which make up these surfaces determine the manner in which the light

is “scattered.” This “scattering function,” denoted by fs, is referred to as the

bidirectional scattering distribution function, or BSDF, which generalizes the bidi

rectional reflection distribution function (BRDF fr) introduced by Nicodemus et

al. [NN77], and the bidirectional transmission distribution function, BTDF ft, (cf.

Figure 2.4). The main distinction between the BRDF and the BTDF is which

hemisphere they are integrated over, the positive hemisphere Ω+ for the BRDF,

and the negative hemisphere Ω− for the BTDF. Additionally, the bidirectional

subsurface scattering reflection distribution function (BSSRDF, fss) introduced by

Jensen et al. [JMLH01] describes light that enters a surface at one point, xi, and

exits at another point, xo, after traveling beneath the surface of the material, hence

subsurface. The BSDF is defined as the ratio of scattered exitant radiance to in

cident irradiance. More formally, the BSDF describes the appearance of a surface

at a point x when viewed from a direction dωo while being illuminated by a light

from direction dωi:

dL (x → ωd o) dL (x → dωo) � 1
fs (x, dωi, dωo) ≡ = (2.6)

dE (x ← ωd i) L (x ← ωd i) (dn · ωd i) d dωi sr

BSDFs provide a more physically plausible model of reflectance as they are con

strained by the laws of thermodynamics [Vea98]. This means that they are non

13

Figure 2.5: A perfectly diffuse, or Lambertian, BRDF.

negative, as a surface cannot absorb more light than falls on it:

fs (x, dωi, dωo) ≥ 0 (2.7)

Additionally the BSDF is energy conserving, that is a surface cannot reflect more

light than it receives:

ˆ
fs (x, dωi, dωo) (dn · ωd o) ddωo ≤ 1, ∀ωi (2.8)

Ω

Lastly, the BSDF obeys the Helmholtz reciprocity principle, which means that the

value of the BSDF stays the same when the incident and outgoing directions are

swapped:

fs (x, dωi, dωo) = fs (x, dωo, dωi) (2.9)

This allows graphics algorithms to follows rays in either direction, either from the

viewer towards the light, or from the light towards the viewer.

14

Figure 2.6: A perfectly specular BRDF, or “mirror.”

There are many classes of BSDF. Isotropic BSDFs scatter light evenly in all

directions, and thus depend on only one input direction, dωi, see Figure 2.5, this

is also known as a Lambertian BRDF, and commonly used for modeling diffuse

surfaces. The opposite of a perfectly diffuse surface is a perfectly specular surface,

that is, a surface where dωo is a perfect reflection of dωi about the normal dn, this is

what we commonly refer to as a “mirror,” see Figure 2.6.

Any surface that is not perfectly diffuse or a mirror is “glossy,” and a repre

sentative BRDF exists somewhere between specular and Lambertian, see Figure

2.7.

2.1.4 The Rendering Equation

The rendering equation as formulated by Kajiya in 1986 [Kaj86] was derived from

previous research into radiative heat transfer [HSM10]. Fundamentally, it attempts

to find the illumination, or more intuitively, “brightness,” at each point by eval

15

Figure 2.7: Most materials exist somewhere between perfectly diffuse and perfectly
specular, we refer to such as “glossy” BRDFs.

uating everything that can be seen from that point. The illumination of these

visible surfaces is in turn evaluated in the same manner, leading to a recursive

formulation for the evaluation of illumination.

2.1.4.1 Hemispherical Formulation

In its simplest form, the rendering equation merely expresses the outgoing radiance,

L (x → dωo), of any point x in a scene as the sum of the emitted radiance, Le, at

the point x, and the reflected radiance, Lr, at the point:

L (x → dωo) = Le (x → dωo) + Lr (x → dωo) (2.10)" v ' " v ' " v '
outgoing emitted reflected

Expanding upon the reflected term in Equation 2.10 with surface geometry and

reflectance functions (described in section 2.1.3) results in the hemispherical form

16

Figure 2.8: The exitant radiance at a point on a surface depends on the incident
radiance over the hemisphere. The incident radiance field resembles a “fisheye”
view from the point, while the exitant radiance is the integral of this value of the
entire hemisphere. (Original image courtesy of Wojiech Jarosz [Jar08]).

of the rendering equation:

ˆ
L (x → dωo) = Le (x → dωo) + L (x ← dωi) fs (x, dωi, dωo) (nd · dωi) ddωi (2.11)" v ' " v ' " v 'outgoing emitted

Ω+

reflected

Since outgoing radiance at one point is dependent on the outgoing radiance at

all other visible points in the scene, this means that the radiance, L, is defined

in terms of its own integral, which we observe by noting that it appears on both

sides of equation 2.11. We illustrate this distinction in Figure 2.8. This form of

recursive integral is known as a Fredholm integral of the second kind. Save in only

the most trivial cases, an analytic solution of such an integral is impossible.

Making this an even more challenging problem is the fact that the rendering

17

Figure 2.9: The geometry term in the area formulation of the rendering equation
describes the relation of energy transfer between differential surfaces, dAx and dAy,
based on their relative angle and distance.

equation performs an integration of a continuous domain. To fully appreciate this,

one must consider the fact that most computer science problems are considered

“hard” when finding a solution takes exponential time on an input n. However, this

assumes a discrete problem domain; for a continuous domain, n isn’t even finite

since the domain itself requires considering an infinite amount of input. Thus, if

solving the rendering equation were merely exponentially hard it would be infinitely

easier than solving the rendering equation in its current form [McG12].

2.1.4.2 Area Formulation

Equation 2.11 represents the hemispherical formulation of the rendering equation.

It can be useful to express the rendering equation as an integration over other

surfaces in the scene rather than over the hemisphere. To this end, we must express

the relationship between the differential solid angle, ddω, and the differential area

18

at another point y, by considering the solid angle subtended by dAy at the point

x as illustrated in Figure 2.9 and given by:

(dny · −dω) cos θy
ddω =

 x − y 2 dAy =
 x − y 2 dAy (2.12)

In order to change the integration from the hemisphere to surface area we must

take into account the visibility between surface points. To accomplish this we

introduce a binary visibility function, V , which determines the mutual visibility

between two points:

⎧

V (x, y) =

⎪⎪⎪⎨1 if x and y are mutually visible,
(2.13)⎪⎪⎪⎩0 otherwise

We can now transform Equation 2.11 into an integral over all surfaces, A, in the

scene, as follows:

ˆ (dnx · dωi) (nd y · −dωi)
L (x → dωo) = Le (x → dωo)+ fr (x, dωi, dωo) L (x ← y) V (x, y) dAy

y∈A x − y 2

(2.14)

To further simplify this expression we define the geometry term, G, as follows:

(dnx · ωd i) (dny · −ωd i) cos θx cos θy
G (x, y) = = (2.15)

 x − y 2 x − y 2

19

The rendering equation can now be expressed as:

ˆ
L (x → dωo) = Le (x → dωo) + fs (x, dωi, dωo) L (x ← y) V (x, y) G (x, y) dAy

y∈A

(2.16)

This formulation allows us to integrate over the area of the other visible surfaces

in the scene directly, rather than over the hemisphere Ω+.

2.1.4.3 Direct and Indirect Illumination

By reformulating the rendering equation as an integral over area, it allows us to

directly integrate over the surfaces of light sources. This allows us to separate

out the components of global illumination into direct illumination, i.e. the light

arriving directly from light sources, and indirect illumination, i.e. the light arriving

from all other sources. This allows us to express the outgoing radiance as:

L (x → ωd o) = Le (x → ωd o) + Ldirect (x → ωd o) + Lindirect (x → ωd o) (2.17)

This allows us to compute the direct and indirect contributions separately and

using different techniques. We can take this approach further, as shown by Arvo

et al. [ATS94]. We can think of light reflection as a convolution of incoming light,

Li, with a BSDF, fr, producing outgoing light Lo, and rewriting in operator form,

using a reflection operator K:

20

ˆ
Lo (x → ωd o) = Li (x → ωd i) fs (x, dωi, dωo)

Ω

Lo (x → ωd o) = (KLi) (x → ωd o)

Lo = KLi

Next, we define a geometry operator G:

(GL) = L (x' (x, ω) , ω) (2.18)

where x' (x, ω) is the closest point from x in direction ω. This operator includes

the visibility term and turns distant surface radiance into local incident radiance,

allowing us to rewrite the rendering equation as:

L = E + KGL (2.19)

L = E + TL (2.20)

where T is the transport operator. This equation can then be solved using an

infinite Neumann series where each summand represents one bounce of light:

∞0
L = E + TiE (2.21)

i=0

21

or,

L = E + TE + T2E + T3E + . . . (2.22)"v ' " v ' " v '

1st bounce 2nd bounce 3rd bounce

allowing us to categorize rendering methods by the number of bounces of illumi

nation considered.

2.2 Spherical Harmonics

In this section we review the formulation, notation and properties of spherical

harmonics as they are a critical component of research detailed in later chapters

of this dissertation, we largely follow the notation used in Jarosz [Jar08].

The Legendre polynomials are at the heart of the Spherical Harmonics, a math

ematical system analogous to the Fourier transform, but defined across the surface

of a sphere.

Firstly, a harmonic is a function that satisfies Laplace’s equation:

 2f = 0 (2.23)

Spherical harmonics are an infinite set of harmonic functions defined on the

sphere. They are derived by solving the angular portion of Laplace’s equation in

spherical coordinates using separation of variables. The spherical harmonic basis

functions derived in this fashion take on complex values, but a complementary,

strictly real-valued, set of harmonics can also be defined. In the context of com

22

puter graphics, we restrict our discussion to the real-valued basis, since we generally

only deal with real-valued functions.

If we represent a direction vector dω using the standard spherical parametriza

tion,

ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (2.24)

the SH function is traditionally denoted by the symbol y, where the real spher

ical harmonic basis functions are defined as:

⎧
√

2K cos (mϕ) P
ml (cosθ) , if m > 0
m
l

0Kl

⎪⎪⎪⎪⎪⎪⎪⎪⎨
(2.25)
y
 ml =

l

2K

P 0

√
(cos θ) , if m = 0

lsin (−mϕ) P −m

where P is the associated Legendre polynomial and K is a scaling factor to

normalize the functions:

⎪⎪⎪⎪⎪⎪⎪⎪⎩ (cosθ) if m < 0
m
l

K
ml =

 (2l + 1) (l − |m|)! (2.26)4π (l + |m|)!

In order to generate all the SH functions, l is a positive integer starting for 0,

but m takes signed integer values from −l to l:

y
 ml (θ, ϕ) where l ∈ R+ , − l ≤ m ≤ l (2.27)

Sometimes it is useful to think of the SH functions occurring in a specific order

so that we can flatten them into a 1D vector, so we will also define the sequence

23

Figure 2.10: The first 5 SH bands plotted as unsigned spherical functions by
distance from the origin and by colour on a unit sphere. Green (light gray) are
positive values and red (dark gray) are negative. Image courtesy of [Gre03].

yi:
m yl (θ, ϕ) = yi (θ, ϕ) where i = l (l + 1) + m (2.28)

The first 5 SH bands plotted as unsigned spherical functions by distance from

the origin and by color on a unit sphere can be seen in Figure 2.10, while the

polynomial forms of the first 3 bands of the spherical harmonic basis functions

are listed in Table 2.1. The spherical harmonic functions along the center column

(i.e. m = 0) of Figure 2.10 are known as the as the zonal harmonics, and they are

circular symmetric. Those functions along the edges, where l = |m|, are known

as the sectoral harmonics. All other spherical harmonics are referred to as the

tesseral harmonics.

24

m = −2 m = −1 m = 0 m = 1 m = 2

l = 0
√

1
2
√
π√ √

l = 1 − 3y
2
√
π

3z
2
√
π√

− 3x
2
√
π √

l = 2
√

15yx
2
√
π −

√
15yz

2
√
π

5(3z2−1)
4
√
π −

√
15xz

2
√
π

15(x2−y2)
4
√
π

Table 2.1: The polynomial forms of the spherical harmonic basis functions of the
first 3 bands (m = 0 . . . 2 and l = −2 . . . 2).

2.2.1 Projection and Expansion

As the spherical harmonics define a complete basis over the sphere, any real-

valued spherical function f may be expanded as a linear combination of the basis

functions:

∞ l0 0
mf (dω) = yl (ωd) flm (2.29)

l=0 m=−l

where the coefficients fl
m are computed by projecting the real-valued spherical

mfunction, f , onto each basis function yl :

ˆ
fm m
l = yl (dω) f (ωd) ddω (2.30)

Ω4π

With an infinite number of coefficients, this expansion would be exact as l goes

to infinity. However, by limiting the number of bands to l = n − 1 we retain only

ththe frequencies of the function up to some threshold. We can obtain an n order

band-limited approximation f̃ of the original function f as follows:

n−1 l0 0
mf̃ (dω) = yl (dω) flm (2.31)

l=0 m=−l

�

�

25

Just a few bands allow us to approximate low-frequency functions. Higher

frequency signals require more bands, and quadratically more coefficients. It can be

helpful to “flatten” the indexing scheme to use a single parameter i = l (l + 1)+m.

This convention make it clear that an nth order approximation can be reconstructed

using n2 coefficients:
n02−1

f̃ (dω) = yi (dω) fi (2.32)
l=0

2.2.2 Properties

There are many properties of spherical harmonics that make them particularly

useful for use in computer graphics, we describe several of the most significant

here.

2.2.2.1 Convolution

The spherical harmonic basis inherits a similar frequency space convolution prop

erty as a Fourier domain basis. If h (z) is a circularly symmetric kernel, then the

convolution h * f is equivalent to weighted multiplication in the SH domain:

4π(h * f)ml = l fl
m (2.33)2l + 1h0

and flattened as:

= (h * f)m = (h * f)(l(l+1)+m)

4π(h * f)i l = 2l + 1h(l(l+1))f(l(l+1)+m) (2.34)

26

The convolution property allows for efficient computation of prefiltered environ

ment maps and irradiance environment maps [RH01]. Note, that the kernel func

tion, h (z), must be circular symmetric, as the result of a non-symmetric convolu

tion would not be defined over the sphere.

2.2.2.2 Orthonormality

The inner product of any two distinct SH basis function is zero due to the fact

that spherical harmonics are orthogonal for different l and different m. In addition

the inner product of a basis function with itself is one due to the normalization

constant Kl
m. This can be expressed as:

ˆ
yi (dω) yj (dω) ddω = δij (2.35)

Ω4π

where δij is the Kronecker delta function. The orthonormal basis functions of

spherical harmonics allow for the efficient projection and expansion operations

described above, in addition to many other operations.

2.2.2.3 Rotational Invariance

Let us define g to be a representation of function f as rotated by some arbitrary

rotation R over the unit sphere. We can define the following relationship:

g (dω) = f (Rdω) (2.36)

27

which implies that it does not matter if the function or the input has been rotated,

the outcome remains the same. This rotational invariance means that there will

be no aliasing artifacts when samples from f are collected at a rotated set of

sample points. For example, rotating a light function will not cause any amplitude

fluctuations.

2.2.2.4 Double Product Integral

Thanks to the orthonormality property, we can express the integrated product of

two spherical harmonic functions as a simple expression. The integral product of

two SH functions ã (ωd) and b̃ (ωd) can be expanded as:

⎞ ˆ ˆ � �⎛ 0 0
ã (ωd) b̃ (dω) = aiyi (ωd) ⎝ bj yj (ωd)⎠ ddω

Ω4π Ω4π i j ˆ00
= aibj yi (dω) yj (ωd) ddω (2.37)

i j Ω4π" v '
Cij

where Cij are called the coupling coefficients, which, due to the definition of

orthonormality in Equation 2.35, are simply Cij = δij . This simple form for the

coupling coefficients introduces significant sparsity in the expression above, leading

28

to the simplification:

ˆ 00
ã (ωd) b̃ (ωd) = aibiCij

Ω4π i j00
= aibiδij (2.38)

i j0
= aibi

i

Effectively, this means that the integrated product of two SH functions can be

computed as the dot product of their coefficient vectors. That this integral can

be computed by a simple dot product means that lighting can be computed very

efficiently in the frequency domain. By expressing both the lighting and the cosine-

weighted BRDF as spherical harmonics, the lighting integral can be evaluated using

a simple dot product. Many existing precomputed rendering techniques (PRT)

exploit this property [SKS02, KSS02].

2.2.2.5 Double Product Projection

Sometimes we want to compute the product of two spherical harmonic functions

directly in the SH basis. We can compute the ith coefficient of the SH projection

� �

29

of the product c (ωd) = a (dω) b (ωd) as:

ˆ
ci = yi (ωd) c (dω) ddω

Ω4π ˆ
= yi (ωd) a (dω) b (ωd) ddω

Ω4π ⎛ ⎞ ˆ 0 0 ⎝ ⎠= yi (ωd) aj yj (ωd) bkyk (ωd) ddω (2.39)
Ω4π j k ˆ00

= aj bk yi (ωd) yj (dω) yk (ωd) ddω
j k Ω4π 00

= aj bkCijk

j k

where Cijk are the tripling coefficients, a sparse set of coefficients which corre

spond to Clebsch-Gordan coefficients, whose analytic values and properties are

well studied [Tin03]. This expression states that the ith coefficient of c is a linear

combination of the, up to, j × k coefficients from a and b. The weighting of these

terms is determined by the tripling coefficients, which are independent of the par

ticular choice of a and b. This allows us to compute the tripling coefficients once

for an efficient evaluation of product projection for many pairs of functions.

2.3 GPU Evolution

Graphics hardware evolution has far outpaced that of CPUs for several processor

generations now, and the programming models that have been developed for them

have come to dominate the parallel-programming landscape due to the ubiquity

of graphics processors in everyday devices. As much of our work focuses on effi

30

Figure 2.11: The Kepler GK110 (Titan) die. The Titan GPU has 2,688 shader
cores and uses over 7.1 billion transistors.

cient utilization of the GPU and its resources, we will briefly describe some of the

evolutionary changes that have impacted this work.

Modern GPUs are massively parallel devices (cf. Figure 2.11) whose perfor

mance scaling is predominantly dependent on the number of processors rather than

clock-speed or pipeline depth (cf. Figure 2.12). This makes GPUs extremely good

at executing batches of the same instructions in parallel. On appropriate work

loads, this approach scales extremely well with the number of shader processors. It

also allows far greater peak theoretical computational throughput as more of the

chip is dedicated to computation rather than increasing processor complexity (see

Figure 2.13). In order to accommodate the massive amounts of data processed by

GPUs, total memory bandwidth has also scaled at a much faster rate than that of

CPUs (cf. Figure 2.14).

31

Figure 2.12: Increase in the number of “Shader Processors” in Nvidia GPUs over
time. Credit: [Gai12]

Figure 2.13: Comparison of GFLOPS available in successive iterations of Nvidia
and Intel processors. Credit: [Gai12]

32

Figure 2.14: Bandwidth comparison of Intel CPUs and Nvidia GPUs. Credit:
[Gai12]

2.3.1 API Evolution

For the past decade, commercial graphics hardware has been tightly intertwined

with the two main APIs with which it can be programmed: that of Microsoft’s Di

rectX API [Wik13] and that of the industry consortium Khronos, OpenGL [SA13].

The capabilities of which are largely reflected in the capabilities exposed in each

new Shader Model (SM). For the purposes of this dissertation, we concern ourselves

primarily with the features exposed by the OpenGL API. Digging up the features

exposed during each Shader Model is a tedious exercise in technical writing arche

ology, particularly as they are often described in terms of the competing APIs

evolving version numbering schemes. An attempt to correlate the shader model,

API versions and capabilities can be seen in [Men12]. Suffice it to say that as the

programming model has evolved from SM 1.0 to the most recent SM 5.0, more

33

and more flexibility and control has been added to the graphics pipeline. Initially,

only vertex and fragment shaders were available as programmable pipeline stages,

OpenGL 3.2 introduced programmable geometry shaders, while OpenGL 4.0 in

troduced tessellation shaders. Finally, OpenGL 4.3 introduced compute shaders

which eschew the traditional graphics pipeline altogether and attempt to utilize

the GPU as a purely general purpose massively parallel processor.

As the GPU has evolved, so too has the graphics pipeline, indeed it no longer

resembles a pipeline so much as a convoluted subway map (cf. Figure 2.15). There

are many ways to traverse the map as many pipeline stages are optional, and

many components remain due to legacy support. However, attempting to combine

bleeding edge features with legacy components can lead to extreme performance

degradations. The ARB_shader_image_load_store [BB11] extension added a fun

damentally new way to write to textures in OpenGL, by binding textures to an

“image” unit, whereas previously texture writes were an operation restricted to

the framebuffer. However, this bleeding edge feature introduces a number of con

straints, for instance even the best hardware has only 8 image units, a crippling

limitation when one considers that each mip-level of a texture must be bound to

a separate “image.” Additionally any texture bound to an “image” unit cannot

simultaneous be bound to a “texture” unit, furthermore attempting to alternate

between image writes and framebuffer writes on the same texture (i.e. mixing old

and new code paths) leads to severe performance degradations.

34

Figure 2.15: The modern graphics “pipeline,” which now more closely resembles a
subway system map. (Image courtesy of the Khronos Foundation)

35

Chapter 3: Related Work

Unquestionably the two greatest sources of influence on this work have been the

Voxel Cone Tracing work by Crassin et al. [CNS∗11, Cra11], and the Light Prop

agation Volume work by Kaplanyan et al. [KD10]. In this chapter we will discuss

these influences in addition to some of the corpus of work that lead to them, and

subsequently, this work. Although for an overview of the state of the art in global

illumination it would be virtually impossible to surpass the quality of the survey

by Ritschel et al. [RDGK12]. Finally, as much of our work is dependent upon a

fast voxelization (discussed in Chapter 4), we also discuss related work in the field

of voxelization (cf. Section 3.7).

3.1 Early Global Illumination

Early global illumination research was dominated by two algorithms–ray tracing

and radiosity, both of which are discussed below, and revisited throughout this

chapter as they are adapted to ever more sophisticated global illumination meth

ods.

36

3.1.1 Ray Tracing

Ray tracing was introduced by Turner Whitted in 1980 [WH80]. The original paper

used rays for determining visibility through a single pixel and also used rays to

compute direct illumination, specular reflection, and refractive illumination effects.

As such, this seminal paper described a major new tool in generating images.

The ray tracing algorithm has been researched and implemented extensively

during the subsequent decades. Initially, much attention was on efficiency, using

well-known techniques such as spatial subdivision and bounding-volumes. More

and more, the focus was also on lighting effects themselves. By treating ray tracing

as a tool for computing integrals, effects such as diffuse reflections and refractions,

motion blur, lens effect, etc. could be computed within a single framework. Many

of the global illumination algorithms discussed below employ some form of ray

shooting. However, ray tracing had difficulty reproducing indirect illumination

effects such as color bleeding and diffuse reflections.

3.1.2 Radiosity

A solution supporting indirect illumination effects came in the form of a finite-

element method called Radiosity, introduced by Goral et al. in 1984 [GTGB84].

Radiosity is based on the calculation of energy transfer between all surface elements

in a scene. This has the drawback that many costly visibility tests are required to

perform an accurate computation.

In radiosity, the distribution of light is computed by subdividing the scene into

37

surface elements (patches) and computing for each element the correct radiometric

value. Once the radiosity value for each surface element was known, the solution

could be displayed with existing graphics hardware. Early radiosity research was

centered around computing a faster solution for the linear system of equations that

expressed the equilibrium of the light distribution in the scene.

Initially, radiosity was limited to diffuse surfaces, and the accuracy of the

method was set by the choice of surface elements. Finer details in the shading

at a frequency higher than the initial mesh could not be displayed.

3.2 Evolution of Global Illumination

As the sheer computational intensity of global illumination became apparent, sev

eral avenues of optimization and acceleration were explored. Traditional techniques

were adapted onto the GPU, new techniques like Instant Radiosity [Kel97], Light-

cuts [WFA∗05], and Photon Mapping [Jen01] were developed, and hierarchical

adaptations of traditional techniques were introduced.

3.2.1 GPU Ray Tracing

Early experiments with GPU ray tracing methods relied on the versatility of pro

grammable graphics hardware and used fragment shaders to perform ray-primitive

intersections [CHH02, PBMH02].

38

3.2.2 GPU Radiosity

Several full radiosity based global illumination algorithms tailored to GPUs were

proposed. Dachsbacher et al. [DSDD07] and Dong et al. [DKTS07] demonstrated

global illumination using techniques based on hierarchical radiosity, yet avoided

traditional visibility computation. Only per-vertex and low-frequency lighting was

supported due to directional discretization. Dachsbacher and Stamminger [DS05]

introduced the idea of reflective shadow maps, where shadow map texels correspond

to virtual point lights. However, no hierarchical lighting and no visibility were

taken into account. Martin et al. [MPT98] computed a coarse-level hierarchical

radiosity solution on the CPU, and used graphics hardware to refine the solution

by texture mapping the residual. In each of these cases, graphics hardware is used

to accelerate elements of the radiosity solution, but the bulk of the processing

occurred on the CPU.

Among attempts to accelerate radiosity, the hemi-cube approach [CG85] used

graphics hardware to identify the patches visible from a given patch in the scene,

attacking form factor computation, generally considered the bottleneck of radiosity

techniques. More recently [CHL04], and [CHH03] proposed methods for GPU-

based radiosity. The former relied on texturing and visibility testing, whereas the

latter used the GPU to process the radiosity matrix.

39

Figure 3.1: A comparison of direct illumination only on the left vs. global illumi
nation on the right. Image credit: [DSDD07].

3.2.3 Hierarchical Radiosity

A large body of research on hierarchical radiosity (HR) was started by the seminal

paper by Hanrahan et al. [HSA91]. These approaches essentially approximated

blocks of the matrix with a constant, and used error estimation oracles to decide

whether to subdivide or approximate, see Figure 3.1. Importance [SAS92] can be

used to speed up the convergence of these techniques.

Hierarchical radiosity proved to be a major step forward, since the algorithm

was now able to adapt its underlying solution mesh to the actual shading values

found on those surfaces. Discontinuity meshing was similarly used to precompute

accurate meshes that followed the discontinuity lines between umbra and penum

bra regions caused by area light sources. The algorithm was also extended by

subdividing the hemisphere around surfaces in a mesh as well, such that glossy

surfaces could also be handled. On the other side of hierarchical radiosity, cluster

40

Figure 3.2: An illustration of hierarchical radiosity refinement. Credit: [HSA91].

ing algorithms were introduced to compute the illumination for disjunct objects in

single clusters.

A hierarchical radiosity technique that took advantage of temporal coherence

was introduced by Drettakis et al. [DS97], but it did not scale to high-complexity

geometry and materials. Some promising approaches based on hierarchical radios

ity have been presented that avoid the computation of visibility, notably [Bun05]

and [DSDD07]. These methods provided very fast solutions; however, their draw

back is that the antiradiance (i.e. light that has to be subtracted to correct for

ignoring visibility) is a highly directional quantity, so a large number of directional

samples were needed for each patch to maintain accuracy. This causes these meth

ods to have difficulty scaling beyond a few thousand patches without compromising

the accuracy of indirect and environment shadows.

41

3.2.4 Instant Radiosity

Instant Radiosity (IR), introduced by Keller in 1997 [Kel97], was one of the first

techniques to exploit the graphics pipeline. The key insight of instant radiosity

was that indirect illumination could be modeled as direct illumination by placing

secondary light sources, referred to as virtual point lights (VPLs), in the scene

on surfaces where indirect light is to be emitted, see Figure 3.3. Rendering can

then be done on the GPU, with visibility handled by shadow mapping, achieving

near-interactive rates. However, this approach is not without its drawbacks, the

VPL placement must be found using simulated photon trajectories to discover

intersections in the scene, and the resultant number of VPLs is often prohibitively

large.

Instant incremental radiosity [LSKL07] is a promising adaptation for one-

bounce indirect illumination that manages a set of 256 VPLs as illumination

changes, without retracing new particles. However, for interactive performance,

it uses sparse interleaved sampling of the image, and re-renders at most 10 shadow

maps per frame, which is only correct for a static scene.

Instant radiosity techniques do not capture all kinds of light transport equally

well, in particular, they have difficulty reproducing caustic effects, and they are

generally limited to 1-bounce global illumination.

42

Figure 3.3: VPLs for indirect illumination using Instant Radiosity, the VPL in the
middle represents second bounce indirect illumination. Image credit: [Kel97].

3.2.5 Lightcuts

The Lightcuts algorithm introduced by Walter et al. in 2005 [WFA∗05], attempted

to improve on the scalability issues of Instant Radiosity. Its approach is based on

the premise that a clustering of lights in the scene can be used to approximate the

full solution, yet no single partitioning of the lights in the scene is likely to work

over the entire image. Thus, the light tree is introduced, essentially a binary tree

used to store a hierarchical evaluation of scene irradiance represented as point light

sources. Clustering is used to progressively approximate groups of lights, which are

stored at nonleaf nodes in the tree, where the leaves are individual lights and the

interior nodes are light clusters containing the lights below them in the tree. So we

are left with a tree in which, each node has a representative light that approximates

the contribution of all the lights in the node’s cluster. Computing the incoming

radiance at a given point requires making a cut through the tree in order to select

a small subset of lights with an error below a given threshold. This approach is

effective because it unifies the computation of both direct and indirect illumination,

43

permitting highly efficient irradiance interpolation using reconstruction cuts.

Multidimensional lightcuts [WABG06] extended the basic lightcuts algorithm

to handle motion blur and participating media, but does not amortize over multiple

frames. Both lightcuts and multidimensional lightcuts require an approximation of

the lighting solution in order to perform light clustering, thus reducing performance

and making lightcuts essentially a two-pass algorithm.

Arbee et al. [AWB08] introduced a single-pass importance driven variant of

the Lightcuts algorithm, and extended it for subsurface scattering and translucent

materials. Coherent Lightcuts [BD08], exploited pixel coherence to improve cut

construction and reduce rendering times, and has the advantage of not requiring

an approximate solution.

Lightcuts and its variant share the weakness that they rely on a ray-tracer to

compute visibility. Though the algorithm achieves sublinear performance in the

number of point lights, it achieves this using complex data structures and traversal

mechanisms that are not easily parallelizable, and thus will not scale with improved

parallel processors.

3.2.6 Photon Mapping

Photon mapping is another popular technique popularized by Jensen in [Jen01],

which has also been given the GPU treatment. The GPU ray tracing work from

[PBMH02] has been extended to photon map rendering [PDC∗03]. Another photon

map rendering method is presented in [MM02]. Both approaches suffered from the

44

Figure 3.4: Light tree and three example cuts, the highlighted areas represent
regions where error is small. Image credit: [WFA∗05].

45

same drawback: the current GPU architecture did not allow for efficient handling

of complex data structures such as trees, which are commonly used in ray tracing

optimization and photon map storage. Therefore, the photon map is stored in

a regular grid [PDC∗03], or in a costly hash table [MM02]. The related nearest-

neighbors queries were simplified to meet the data structure and GPU constraints,

yielding quality or performance drops.

Other GPU-accelerated photon map rendering methods have been proposed.

Larsen et al. [LC04] used graphics hardware to perform the costly final gather

ing: the photon map was built on the CPU using the classical method defined in

[Jen01]. For each surface, an “approximate illumination map” was built using the

data contained in the photon map. The GPU was used to perform final gather

ing and caustics filtering. The approaches presented in [SB97] and [LP03] used

the GPU for irradiance reconstruction: each photon was rendered as a textured

quadrilateral. The corresponding texture represented the kernel function for the

photon. Although those methods showed encouraging results, they were bounded

by the large number of photons required to render a high quality image.

Although photon mapping provides a solution to many difficult problems in

global illumination, the algorithm by itself is often inadequate or inefficient under

complex lighting conditions. There has been a great quantity of research done

into improving efficiency in all areas of the algorithm to deal with these situations,

including new methods of density estimation, photon propagation, and sampling.

Poor-quality results caused by inadequate under representation of illumination

by the photon map is a well studied problem. A number of solutions have been

46

proposed, which focus on optimizing the distribution of photons prior to render

ing. Visual importance sampling [KW00], [PP98] and a technique based on the

Metropolis-Hastings algorithm [FCL05] have all shown to be effective at storing

photons in a much more optimal distribution pattern. Conversely, unnecessary over

representation in certain areas has been addressed using density control [SW00]

to restrict photon storage in areas of strong incident illumination. Tawara et al.

[TMS04a] introduced a novel method also based on importance sampling, which

separated strong and weak diffuse illumination into two independent data sets to

gether with a voxel grid containing information about photon density. Havran

et al. [HHS05] accelerated final gathering by performing the process in reverse,

computing density estimations at each photon and propagating the irradiance to

nearby gather ray hits.

3.3 Advanced Global Illumination

New global illumination techniques continue to abound, as well as many variants

and hybrid techniques. Several major research directions such as Precomputed

Radiance Transfer [Leh04], (Ir)radiance caching [WRC88], and spherical function

representation have been very actively researched.

47

3.3.1 Advanced Hierarchical Methods

Hierarchical data structures are widely used throughout computer graphics to store

data at progressive levels of detail. When accessed according to an error metric,

these structures may be used to reduce image artifacts and improve the efficiency

of global illumination algorithms

The mipmapping concept was extended independently by Benson and Davis

with octree textures [KLS∗05] and by DeBry et al. with octexes, both of which

compensated for the poor performance of 2D mipmaps on complex 3D surfaces. A

volumetric GPU-friendly octree data structure based on mipmapping, called the

Histopyramid, was also introduced in [DZTS07], with application to many areas.

Jensen and Buhler [JB02] use a hierarchical data structure to rapidly evaluate

the BSSRDF of translucent materials. Irradiance is sampled across the surface of

translucent objects and is progressively stored throughout the nodes of an octree.

Using approximated samples where it is appropriate, greatly accelerated evalu

ation of the diffusion approximation when compared to evaluating each sample

individually.

The irradiance atlas [CB04] used a sparse adaptive octree to represent photon

maps that are too large to be held in memory. The irradiance stored at each

photon is compiled into a hierarchical data structure called a brick map. This

approach allowed irradiance data to be cached and swapped in and out of memory

efficiently and made rendering scenes containing extremely detailed photon maps

practical, even with limited memory. As a result of the progressive approximation,

48

sampling from the brick map also benefits from filtering, resulting in a reduction

in noise. Yue et al. [YIDN07] employed a similar volumetric data structure to

evaluate irradiance from surfaces, allowing relighting of scenes at interactive frame

rates.

3.3.2 Precomputed Radiance Transfer

Precomputed Radiance Transfer (PRT) is a method to quickly compute the re

flection integral for a given environment, e.g. [SKS02, KSS02, SLS05][NRH04,

HPB07]. Radiance (or irradiance) is stored in some fashion, such that it can be

recovered later. These techniques are based on extensive precomputation to render

static or dynamic scenes under distant or indirect illumination. The classic PRT

[SKS02] approach allowed static scenes under distant low-frequency lighting, vis

ibility and BRDFs, which were extended to all frequencies in [NRH04] and other

follow up work. In PRT, scenes are usually assumed to remain static. Limited

dynamic scenes (rigid objects) can be supported, e.g. by Zhou et al. [ZHL∗05],

but indirect illumination is then very difficult to achieve [IDYN07, PLPB07]. This

was generalized to deforming geometry in [RWS∗06]. Recently, Akerlund et al.

[AUW07] demonstrated real-time one-bounce global illumination in conjunction

with local lighting. However, geometry still needed to be static due to the use of

precomputed visibility.

PRT permits the efficient rendering of many illumination effects on static ob

jects, such as soft shadows and glossy reflections, in real-time [SKS02, NRH03,

49

LSSS04]. The illumination solution is parametrized by the incident lighting, that

is assumed to be represented by means of basis functions, such as spherical har

monics [SKS02] or wavelets [NRH03], which allowed for efficient rendering. PRT

exploits the restriction to static objects by pre-computing all the visibility queries

and baking them into the parametrized solution.

Generally, lighting in PRT is assumed to be distant. However, low-frequency

localized lighting can be integrated [AKDS04]. When only indirect illumination is

considered, local point and spot lights are possible [KAMJ05, KTHS06, HPB06].

Dynamic scenes are inherently difficult for PRT techniques, since visibility can

no longer be precomputed. Mei et al. [MSW04] precomputed visibility on a per-

object basis for a discrete set of directions and stored it in the form of uncompressed

shadow maps. This allowed them to render multiple rigidly moving objects under

low-frequency distant illumination. However, dynamic local light sources remained

infeasible. Similar in spirit, Zhou et al. [ZHL∗05] proposed the use of shadow fields,

which allowed movement of individual rigid objects under semi-local (lights may

not enter an object’s bounding sphere) or distant illumination, producing correct

inter-shadowing. In practice, this technique was limited to low-frequency light

ing, as all frequency lighting updates took several seconds for dynamic scenes.

Dynamic objects were even more difficult to handle, as no precomputation can

be employed. Hemispherical rasterization [KLA04] and spherical harmonics expo

nentiation [RWS∗06] have been proposed for small- or medium-sized scenes under

low-frequency illumination.

Kristensen et al. [KAMJ05] described a technique for rendering indirect il

50

lumination from omnidirectional, local, moving light sources. The results were

impressive, but dynamic objects were not supported, and preprocessing costs were

substantial. Kontkanen et al. [KTHS06] extended wavelet radiosity for comput

ing a full hierarchical direct-to-indirect transport operator for a static scene. The

technique supported all types of light sources, and, in principle, glossy BRDFs.

However, dynamic objects could not be easily supported. Furthermore, precom

putation still took tens of minutes.

Coherent Shadow Maps (CSMs) by Ritschel et al. [RGKM07] used a shadow

map based data structure, but enhanced such that it could be used for physically-

based real-time rendering as a PRT-like technique. CSMs exploit coherence be

tween many shadow maps for compression, and support all-frequency lighting,

dynamically moving rigid objects, local as well as distant light sources, and dy

namic material properties. Nonetheless, the method is fast, supports progressive

rendering for even faster updates, and is memory efficient through the use of CSMs.

However, CSMs are unable to model self-shadowing on objects. Coherent Surface

Shadow Maps (CSSMs) [RGKS08] rectified this deficiency, allowing for visibility

tests between moving objects and a high number of lights outside their convex

hulls using simple shadow mapping, see Figure 3.5.

Precomputed radiance transfer is an excellent technique to support interactive

previewing of lighting and material changes in static scenes, but the cost of often

several minutes to hours of precomputation and (in some cases) fixing the camera,

limits its interest.

51

Figure 3.5: Images generated by the Coherent Shadow Map approach. Image
credit: [RGKM07].

3.3.3 (Ir)Radiance Caching

Radiance and irradiance are two similar, yet distinct, and often confused quantities,

hence radiance caching and irradiance caching methods are often referred to as

(ir)radiance caching methods. Regardless, (ir)radiance caching was first proposed

by Ward et al. [WRC88] as a means of computing indirect diffuse inter-reflections

in a distributed ray tracer [War94]. The technique exploited the smoothness of the

indirect illumination by sampling the irradiance sparsely over surfaces, caching the

results and interpolating them.

For each ray hitting a surface, the irradiance cache is queried. If one or more

irradiance records are available, the irradiance is interpolated using irradiance gra

dients, see Figure 3.6. Otherwise a new irradiance record is computed by sampling

the hemisphere and added to the cache. In this way, the cache gets filled lazily,

progressively in a view dependent manner. As it gets filled, more and more irradi

ance computations can be carried out by interpolation. Ward used an octree for

storing the irradiance records. In [WH92] the interpolation quality is improved by

52

the use of irradiance gradients.

In [Nij03, NPG05], Nijasure et al. proposed a volumetric irradiance cache

method for non-diffuse global illumination computation using graphics hardware.

The incoming radiance function at a number of locations a priori selected was sam

pled and projected into the spherical harmonics basis. Then the incoming radiance

at any surface point is estimated by interpolating the incoming radiance at nearby

sample locations. Although the authors demonstrate real-time performance, the

main drawback of this method is the choice of sample points. In [Nij03, NPG05]

these points are placed on a regular grid inside the volume of the scene, therefore

not adapting to the lighting complexity.

The irradiance caching concept was extended to radiance caching by Krivanek

et al. [KGPB08], [KGBP05] in which incoming radiance at each sample was stored

using hemispherical and spherical harmonic coefficients. This allowed for much

more accurate interpolation, especially over high-frequency BRDFs.

Radiance cache splatting [GKBP05][KGPB08] presented an algorithm for one-

bounce global illumination that took advantage of illumination coherence by sub-

sampling it at a sparse set of locations. Temporal radiance caching [GBP08] accel

erated computation of global illumination for image sequences by reusing samples

between frames. Reflective shadow maps [DS05] and Splatting indirect illumina

tion [DS06] provided interactive solutions for one-bounce global illumination, but

neglected shadowing effects in the indirect bounces.

Radiance interpolation can be used whenever there is a certain level of smooth

ness in the radiometric quantity being computed. All radiosity methods use in

53

Figure 3.6: (Ir)Radiance Gradients. Image credit: [KGW∗07].

terpolation in the form of surface discretization. They adapt to the irradiance

smoothness by adaptive geometry subdivision, e.g. [HSA91, Hec91, LTG92].

In the context of Monte Carlo ray tracing many approaches have been proposed

for screen space interpolation [Guo98], [WDP99, WDG02, BWG03]. The goal of

these methods was to display an approximate solution quickly, possibly at inter

active frame rates. Object space interpolation has also been used for the purpose

of interactive previewing [SS00, TPWG02]. Sparse sampling and interpolation for

high quality rendering was used in [BT99] and [WRC88]. The approach of Bala et

al. [BT99] is suitable only for deterministic ray tracing. Ward et al. [WRC88] used

interpolation only for diffuse surfaces. [KGPB08] extended this work to support

caching and interpolation of the directional incoming radiance on glossy surfaces.

54

3.3.3.1 Spherical Function Representation

A suitable representation of functions on a (hemi)sphere is necessary for incoming

radiance caching. Piecewise constant representation [SHS98, CLS97, TMS04b] is

simple but prone to aliasing and usually very memory intensive.

Wavelets Wavelets are one popular solution, however, unless higher order wavelets

are used, even wavelet representation [PB96, SGCH94, LF96], [SSG∗00, SS95] does

not remove the aliasing problems. But with higher order wavelets the mathematics

becomes complicated and hence discourages their use.

Spherical Harmonics Spherical Harmonics [SAWG91], [SDS95], [CMS87, WAT92,

RH02, Ram02, KSS02, SKS02, SHHS03] removed the aliasing problem and are

efficient for the representation of low-frequency functions. However, the repre

sentation of sharp functions required a large number of coefficients and ringing

artifacts could appear. Hemispherical harmonics [GKPB04] are better suited for

representing functions on a hemisphere. Basis functions very similar to spherical

harmonics are Zernike polynomials [WC92], [KDS96] and hemispherical harmonics

of Makhotkin [Mak96].

3.3.4 Ambient Occlusion

Ambient occlusion is a heuristic approximation to global illumination now in com

mon practical use. For a point being shaded, it is defined as the hemispherical

55

integral of either the visibility function or some suitable function of the distance

to the nearest surface in each direction. The model nicely reproduces soft dark

corners, an important feature of “real” global illumination solutions. Kontkanen

and Laine [KL05] and Malmer et al. [MAH07] described techniques for rendering

ambient occlusion to the surroundings of moving, rigid objects. Although ambient

occlusion is a popular technique, it is less interesting in that it doesn’t respect the

rendering equation.

3.3.5 Implicit Visibility

Several new papers explore the usage of Implicit Visibility for global illumination

solutions. In [DKTS07] they tackled the visibility problem by implicitly evaluating

mutual visibility while constructing a hierarchical link structure between scene

elements. However, their link structure did not scale well with the number of

patches in the scene, and was complicated to maintain with moving geometry.

A more interesting approach to implicit visibility was presented by Dachsbacher

et al. [DSDD07] as antiradiance, which reformulates the rendering equation in

such a way that requires the consideration of both radiance and antiradiance, see

Figure 3.7, but enabled the treatment of visibility in an implicit manner. Simi

lar approaches such as “negative light” have been used to allow for incremental

radiosity updates, where it compensates for the different visibility configuration

between two frames [BF89, PSV90]. Shadow photons [JC95] are also related to

the idea of negative light. However, visibility computation was still required. In

56

particular, methods for the efficient update of global illumination [Sha97, DS97]

required searching for regions that need recomputation of visibility. The antiradi

ance reformulation avoids this search and does not require any explicit visibility

computation. Bunnel [Bun05] used “negative light” to approximate ambient oc

clusion and simulated the effect of inter-reflection, but the negative light was not

directional, and this heuristic did not respect the rendering equation. Ren et al.

[RWS∗06] proposed a different reformulation of visibility using the exponentiation

of spherical harmonics in the context of soft shadows. They, however, still needed

to determine the occluders between an object and the light and do not treat global

illumination.

The work most related to antiradiance is by Pellegrini [Pel99] who also derived a

new rendering equation where explicit visibility is avoided, but his work is purely

theoretical. Antiradiance used similar ideas where negative light is transmitted

through each surface to compensate for the lack of occlusion treatment.

A number of solutions for dynamic global illumination performed partial com

putations and used caching or reprojection of results from previous frames. An ex

ample is the Shading Cache [TPWG02]; this approach cached samples from a path

tracer and used graphics hardware for interpolation. However, these approaches

still required visibility to compute the sparse samples.

Since antiradiance removed occlusion testing, it is an inherently O(n2) algo

rithm in the number of patches. Thus it employed hierarchical radiosity methods

[Sil95, SAG94], to reduce computational complexity. These approaches required

sophisticated data structures and global random-access visibility computations for

57

Figure 3.7: (a) Operator formalization of the rendering equation. (b) Reformula
tion using unoccluded transport, creating antiradiance to compensate for extrane
ous transport. Image credit: [DSDD07].

form-factors. Extensions to this method stored directional radiance using wavelets

[SSG∗00] or spherical harmonics [SDS95]. In contrast, antiradiance stored the

directional information of “negative light,” thus avoiding visibility computation.

3.4 Volumetric Techniques

Eikonal rendering, proposed by Ihrke et al. [IZT∗07], as opposed to most ray

shooting based methods, simulated the propagation of a wavefront though volu

metric scene geometry. This approach enabled them to display realistic refractive

58

Figure 3.8: Eikonal adaptive wavefront propagation. Image credit: [IZT∗07].

objects with complex material properties, such as an arbitrarily varying refractive

index, inhomogeneous attenuation, as well as spatially-varying anisotropic scatter

ing and reflectance properties. Through the wavefront propagation based on the

Eikonal equation, they deposit illumination data in a refractive index volume, as

seen in Figure 3.8, which once filled can be efficiently displayed using a fast ray-

caster. Though rather unique, the drawback of this approach is that the wavefront

propagation takes a few seconds. Thus, lighting changes cannot be interactively

displayed.

59

Another paper, Interactive Relighting of Dynamic Refractive Objects by Sun et

al. [SZS∗08], shared several aspects in common with the Eikonal renderer, with

the notable exception of Eikonal wavefront propagation. Though not advertised

as such, [SZS∗08] is essentially a very well parallelized photon mapper, except

instead of depositing radiance values in a balanced KD-tree, radiance is stored in

a volumetric texture much as in the Eikonal approach, which, similarly, can then

be visualized extremely efficiently with ray-casting. [SZS∗08] further extended the

flexibility of their approach by performing fast object voxelization of triangulated

geometry, allowing for a greater variety of inputs.

[SZS∗08] deserves special mention because it embodies a concept described in

[LD08] known as “time to image.” This is a notion in which frames per second is

deemphasized, and the total time to construct a solution, or “image,” is considered

more important. This is significant when one considers that this implies that

[SZS∗08] performed no precomputation, and that its entire rendering pipeline, see

Figure 3.9, was fully evaluated every frame. This means that their implementation

implicitly handled a dynamic camera, dynamic geometry, and dynamic lighting.

3.5 Light Propagation Volumes

Originally developed for CryTek’s CryEngine 3, and published as Cascaded Light

Propagation Volumes by Kaplanyan et al. [KD10], light propagation volumes is a

real-time global illumination algorithm inspired by the Discrete Ordinates Method,

and lattice based diffusion methods of light transport.

60

Figure 3.9: The rendering pipeline from [SZS∗08].

(a) (b) (c)

Figure 3.10: (a) Each cell (voxel) of the LPV stores the directional light intensity
that is propagated to its axial neighbors; (b) incident flux is computed for each
face of the destination voxel; (c) to account for occlusion a separate “geometry
volume” is used, offset by half from the voxel centers. Image credit: [KD10].

After an initial radiance injection phase using Dachsbacher’s reflective shadow

maps [DS05] into a volumetric texture referred to as the Light Propagation Volume

(LPV), the light is then iteratively transferred (propagated) to its neighbors. Ad

ditionally, a Geometry Volume is used to prevent light from leaking through walls.

In the cascaded version of the algorithm, a set of nested grids is used to improve

performance and lower memory consumption.

Notably, light is stored as 2 band spherical harmonics, and during propagation

61

the flux incident to each of the neighbor cell’s faces is computed, next the incident

flux of each cell is converted into outgoing intensity. Conceptually, we can con

sider this process as a series of VPLs, each facing one of the faces of the cell and

emitting flux equal to that of the face. These per-face VPLs are then accumulated

into a single VPL and stored back into the light propagation volume as spherical

harmonics, see Figure 3.10. After several iterations, the light propagation volume

contains an approximation of the diffuse lighting in the scene. During rendering,

the incident radiance can be sampled from the trilinearly interpolated spherical

harmonic functions stored in the light propagation volume.

3.6 Voxel Cone Tracing

Voxel cone tracing as introduced in Indirect Illumination using Voxel Cone Tracing

by Crassin et al. in [CNS∗11], builds a sparse voxel octree which stores a filtered

representation of the scene. The voxels store many components, the diffuse color,

and opacity, in addition to the light direction and intensity stored as an isotropic

Gaussian lobe.

As the voxel cone tracing technique as presented in [CNS∗11] employs an oc

tree structure and still attempts to exploit hardware based quadrilinear filtering,

it’s octree nodes, or “bricks,” must store an extra layer of redundant information

which must be transferred to neighboring bricks, which incurs significant cost and

complexity.

However, once the filtered sparse voxel octree is constructed, it provides an

62

Figure 3.11: Illustration of the sampling scheme employed by voxel cone tracing,
the cone radius at a sample point indicates the depth in the octree to sample from.
Image credit: [CNS∗11]

63

excellent structure from which to compute global illumination. In a deferred ren

dering context, for each pixel, a small set of cones approximating a BRDF is traced

within the structure to gather incident radiance. As the cone expands the sam

pling rate decreases and samples are taken from higher levels of the filtered octree,

see Figure 3.11. This fact makes voxel cone tracing extremely efficient, while the

filtered voxel information allows the cone based sampling to rapidly approximate

the contribution from a large amount of geometry. Varying the cone aperture and

distribution allows voxel cone tracing to approximate different BRDFs, for exam

ple, a uniformly distributed set of wide cones allows for the approximation of a

diffuse BRDF, while a single narrow cone traced in the direction of reflection about

the normal can provide the specular component of a glossy BRDF.

3.7 Voxelization

Approaches to voxelization take many forms, and must balance several properties.

One of the earlier approaches to utilize the graphics pipeline, [FC00] constructed a

surface voxelization via rasterizing the geometry for each voxel slice while clamping

the viewport to each slice. [LFWK05] introduced “depth peeling” which reduced

the number of rendering passes by capturing 1-level of surface depth complexity per

render pass. These approaches tended to miss voxels, and often must be applied

once along each orthogonal plane to capture missed geometry. [DCB∗04] utilized

binary encoding to store voxel occupancy in separate bits of multi-channel render

targets, allowing them to process multiple voxel slices in a single rendering pass.

64

This approach is sometimes referred to as a slicemap [ED06].

Approaches exist, such as conservative voxelization by [ZCEP07], which employ

the conservative rasterization technique of [HAMO05]. This approach amplified

single triangles to potentially nine triangles by expanding triangle vertices to pixel

sized squares and outputting the convex hull of the resultant geometry. [SEA08]

improved on this by ensuring that fewer triangles would be generated during tri

angle expansion, while [HHW09] found it was most effective to simply expand

triangles by half the diagonal of a pixel and discard extra fragments in the pixel

shader.

Some voxelization techniques also target solid voxelization; generally, these

must restrict their input geometry to closed, watertight models, and classify voxels

as either interior or exterior. As surface geometry is voxelized, entire columns of

voxels are set, final classification is based on the count, or parity, of the voxel.

An odd value indicates a voxel as interior, while even indicates exterior. In GPU

hardware this corresponds to applying a logical XOR which is supported by the

frame buffer. [FC00] presented such an approach using slice-wise rendering, while

[ED08] developed a high-performance single pass approach.

Most recently, [CG12] have released an approach that operates similarly to the

fragment-parallel component of our scheme, discussed in section 4.1.2, exploiting

the recently exposed ability to perform random texture writes in OpenGL using

the image API. By constructing an orthographic projection matrix per-triangle in

the geometry shader, they were able to rely on the OpenGL rasterizer to voxelize

their geometry.

65

More recently, approaches have been developed which take an explicitly compu

tational approach to voxelization without utilizing fixed function hardware. [SS10]

implemented a triangle parallel voxelization approach in CUDA, which achieved

accurate 6- and 26-separating binary voxelization into a sparse hierarchical octree.

Pantaleoni’s VoxelPipe [Pan11] implementation took a similar approach while fully

supporting a variety of render targets and robust blending support. Both ap

proaches also employed a tile-based voxelization.

66

Chapter 4: Voxelization

Figure 4.1: The XYZ RGB Asian Dragon voxelized at 1283, 2563, and 5123 reso
lutions.

In this chapter we cover our work on voxelization. Related work in voxelization

can be seen in Section 3.7. In Section 4.1 we discuss first our triangle-parallel and

fragment-parallel approaches and how we combine them for our hybrid implemen

tation. Additionally, we discuss several Voxel-List construction methods, and a

method to correctly interpolate attributes using barycentric coordinates. This is

followed by a look at the comparative performance of our method, Section 4.2, and

finally a discussion of our findings with respect to voxelization, Section 4.3,

Our voxelization approach largely follows the techniques described in [RB13],

with modifications and extensions suitable to the application of Global Illumina

tion. Primarily these extensions involve methods to store appropriate attributes

at voxel locations (see Chapter 5), and modifications to generate active-voxel-lists

67

in order to accelerate mipmapping. The mipmapping process is covered in greater

detail in Section 5.3.

[RB13] proposed a hybrid voxelization pipeline which adapted previous com

putational approaches to the context of the graphics pipeline, and divided the

voxelization workload between Triangle-Parallel and Fragment-Parallel techniques.

4.1 Voxelization

Whereas previous techniques relied exclusively on the graphics pipeline, or rejected

it completely for a computational approach, we demonstrate how to find a middle

ground to apply the techniques of computational voxelization approaches within

the framework of the graphics pipeline. First, however, we must introduce both

the triangle-parallel (section 4.1.1) and fragment-parallel (section 4.1.2) techniques

which make up the primary components of our hybrid approach (section 4.1.3).

Both techniques employ the same 3D extension of the [AM05] triangle/box overlap

tests found in [SS10] and [Pan11]. These approaches differ from each other primar

ily in their factorization of the computational overlap testing, and the methods in

which they try to achieve optimal parallelism.

Triangle/Voxel Overlap We can consider the exercise of finding an intersec

tion between a triangle T (with vertices v0, v1, v2 and edges ei = v(i+1)%3 − vi)

and a voxel p to be fundamentally an exercise in first reducing the number of tri

angle voxel pairs to consider, and secondly, an effort in reducing the computation

68

required to confirm an intersection between a triangle and a voxel. Considering

initially the potential intersection between a triangle and the set of all voxels,

conceptually, the process is executed in the following order.

1. Reduce the set of potential voxel intersections to only those that overlap the

axis-aligned bounding volume b of the triangle.

2. Iterate over this reduced set of voxels (from bmin to bmax) and discard any

that do not intersect the triangle’s plane.

3. If the triangle plane divides the voxels, test all three of its 2D planar projec
T XY ,T YZ,T ZXtions to confirm overlap.

The steps above rely heavily on point to plane, and point to line distance calcula

tions. For instance, the plane overlap test relies on computing the signed distance

to the plane from two points on opposite ends of the voxel, let us call these points

pmin and pmax. If these distances have opposite signs, i.e. pmin and pmax are on

opposite sides of the plane, this indicates overlap. The selection of pmin and pmax

determines the separability of the resultant voxelization, see figure 4.2.
T XY ,T YZ,T ZXSimilarly, when testing the triangle projections against their

pXY , pYZ, pZXrespective voxel projections , we use the projected inward facing

, nYZ, nZXedge normals (nXY for i = 0, 1, 2) to select the “most interior” point on ei ei ei

, eYZ, eZXthe box for each edge (eXY for i = 0, 1, 2), and if all projected edge to i i i

interior point distances are positive, this indicates overlap within that projection,

see figure 4.3.

69

pmin

pmax

pmax

pmin

v0 v0

v1 v1

v2v2

n n

-

+

+

-

Figure 4.2: pmin and pmax for 26-separable voxelization on left, and for 6-separable
voxelization on right. Note that for 6-separable voxelization we are actually testing
for intersection of the diamond shape inscribed inside the voxel as opposed to the
entire voxel in the 26-separable case.

v0

ne0

v1 v2

ne1

ne2

pe1

pe2

pe2 pe0

pe1

v0

ne0

v1 v2

ne1

ne2
pe0

+

+

+

+

+

-

Figure 4.3: pei for 26-separable voxelization on the left, and for 6-separable vox
elization on the right. Similar to the plane-overlap test, the 6-separable voxeliza
tion is actually testing against the diamond inscribed inside the voxel’s planar
projection.

70

Factorization As described in [SS10] and [Sch12], the points pmin and pmax and

pXY, pYZ, pZX (for i = 0, 1, 2) are determined with the aid of an offset vector, ei ei ei

known as a critical point, which is determined by the relevant normal. However, if

we take the distance calculations and refactor them such that minimal computation

occurs while iterating over the voxels, i.e. factor out all computations not directly

dependent on the voxel coordinates of p, we can actually simplify the expressions

, pYZto the point that the critical point and the points pmin and pmax and pXY ,ei ei

pZX
ei

for i = 0, 1, 2 need never be determined. Instead we substitute per-triangle

, dYZ, dZXvariables dmin, dmax and dXY (for i = 0, 1, 2), which represent the factored ei ei ei

out components of the distance calculation not dependent on the voxel coordinates.

Optimization There are several ways in which we can optimize this process with

an eye towards reducing the amount of computation that occurs in the innermost

loops of our bounding box traversal.

1. The first involves pre-computing all per-triangle variables, which includes the

,nYZ, nZXtriangle normal n, the nine planar projected edge normals nXY
ei

(forei ei

, dYZ, dZXi = 0, 1, 2), and the eleven factored variables dXY (for i = 0, 1, 2),ei ei ei

dmin, and dmax.

2. Determine the dominant normal direction, and use this to select the orthog

onal plane of maximal projection (XY, YZ, or ZX), then iterate over the

component axes of this plane first, the remaining axis we shall refer to as the

depth-axis.

71

3. Test the 2D projected overlap with the orthogonal plane of maximal projec

tion first.

4. Replace the plane overlap test with an intersection test along the depth-axis

test to determine the minimal necessary range to iterate over (rather than

the entire range of the bounding box along the depth-axis).

5. Test the remaining two planar projections for overlap.

Should all of these tests succeed, we can confirm that triangle T intersects voxel

p. Pseudocode for both conservative and thin voxelization routines is provided in

Figures 4.4 and 4.5, respectively. For more detail on the triangle/box overlap test,

the reader is referred to [SS10, Sch12] and [Pan11].

4.1.1 Triangle-parallel voxelization

The most natural approach to voxelization of an input mesh is to parallelize on

the input geometry (i.e. the triangles). [Sch12] implemented such an approach in

a Direct3D Compute shader as a single pass. [SS10, Pan11] implemented a multi

pass approach to improve parallelism. [SS10] improved coherence by specializing

the triangle-box intersection code into nine different voxel-dependent cases; 1D

bounding boxes along each axis; 2D bounding boxes in each coordinate plane;

and 3D bounding boxes for three dominant normal directions. Unfortunately this

requires a 2-pass approach, and while it results in high thread coherence (since

kernels operate exclusively on similar triangles), it is quite complex, and exceeds

72

1: function conservativeVoxelize(v0, v1, v2, bmin, bmax, unswizzle)
2: ei ← v(i+1)mod3 − vi

3: n ← cross (e0, e1)
4: nXY ← sign (nz) · (−ei,y, ei,x)T

ei

5: nYZ ← sign (nx) · (−ei,z, ei,y)T
ei

6: nZX ← sign (ny) · (−ei,x, ei,z)T
ei (b () ()

dXY nXY 0, nXY 0, nXY7: ← − , vi,xy + max + maxei ei ei,x ei ,y(b () ()
dYZ nYZ 0, nYZ 0, nYZ8: ← − , vi,yz + max + maxei ei ei,x ei,y(b () ()
dZX nZX 0, nZX 0, nZX9: ← − , vi,zx + max + maxei ei ei,x ei,y

10: n ← sign (nz) · n // ensures zmin < zmax

11: dmin ← (n, v0) − max(0, nx) − max(0, ny)
12: dmax ← (n, v0) − min(0, nx) − min(0, ny)
13: for px ← bmin,x, . . . , bmax,x do
14: for py ← bmin,y, . . . ,((bb max,y do)

nXY + dXY15: if ∀2 ≥ 0 theni=0 ei
, pxy e�i

16: zmin ← max bmin,z, (−(nxy, pxy) + dmin) 1
nzl)

17: zmax ← min bmax,z, (−(nxy, pxy) + dmax) 1
nz

18: for pz ← zmin, . . . , zmax do((b (b)
nYZ + dYZ nZX + dZX19: if ∀2

i=0 ei
, pxy ei

≥ 0 ∧ ei
, pxy ei

≥ 0 then
20: V [unswizzle · p] ← true
21: end function

Figure 4.4: Pseudocode for a conservative (26-separable) computational voxeliza
tion, this assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled,
while unswizzle represents a permutation matrix used to get the unswizzled voxel
location.

73

1: function thinVoxelize(b b)v v v , unswizzle0 1 2 min, , , , max

XY XYn n,

YZ YZn nb
+ 0 5 max·.

2: ← −e v v(+1) mod 3i ii

3: cross ()←n e e0 1,
TXY4: sign () ()← −n n e e· ,z i,y i,x
TYZ5: sign () ()← −n n e e· ,x i,z i,y

ei

ei
 (
ei,x ei,y

+ 0.5 · max ei ,x
((

nZX6: ei)))

dXY
ei

← sign (ny) · (−ei,x, ei,z)T

nXY
ei

, 0.5 − vi,xy
bb

n ← sign (nz) · n // ensures zmin < zmax

(((7: + 0.5 · max←
dYZ

ei
8: , 0.5 − vi,yz← ,nYZ

ei

 dZX

ei
nZX

ei,x

ei,y
nZX

ei,y9: , 0.5 − vi,zx← ,nZX
ei

10:
11: dcen ← (n, v0) − 0.5 · nx − 0.5 · ny
12: for px ← bmin,x, . . . , bmax,x do
13:
14:
15:
16:

bfor py ← bmin,y, . . . , bmax,y do((
nXYif ∀2

i=0 ei

zint ← (−(nxy, pxy) + dcen) 1
nz

zmin ← max (bmin,z, lzintd)

, pxy + dXY
ei

)
≥ 0 then

17: zmax ← min (bmax,z, Izintl)
18:
19:
20:
21: end function

bfor pz ← zmin, . . . , zmax do((
nYZif ∀2

i=0 ei

V [unswizzle · p] ← true
, pxy + dYZ

ei

(
nZX

ei
, pxy

b
+ dZX

ei
≥ 0

)
then≥ 0 ∧

Figure 4.5: Pseudocode for a thin (6-separable) computational voxelization, this as
sumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, while unswizzle
represents a permutation matrix used to get the unswizzled voxel location.

74

the number of available image units commonly available. However, we can reduce

this by a factor of three, allowing all 1D, 2D, and 3D cases to be treated the same

by performing a simple transformation discussed in section 4.1.2.

Input geometry is first transformed into “voxel-space,” that is the space rang

ing from (0, 0, 0)T to (Vx, Vy, Vz)T, in the vertex shader. Second, an intersection

routine implemented in the geometry shader, as described in section 4.1, performs

the voxelization, the performance of which can be seen in figure 4.6. It is read

ily apparent that a naïve triangle-parallel approach only performs well in scenes

that exhibit certain characteristics, for instance, the evenly tessellated XYZ RGB

Dragon and Stanford Bunny models, both scenes that exhibit even and regular

triangulation. Any scene that contains large triangles (such as might be found on

a wall) like the Crytek Sponza Atrium, the Conference Room, or even, sadistically,

a single large scene-spanning triangle, the naïve triangle-parallel approach has no

mechanism by which to balance the workload, and the voxelization must wait while

individual threads work alone to voxelize large triangles.

75

Figure 4.6: Performance of a naïve triangle-parallel voxelization. Exhibits poor
performance on scenes containing large polygons. Performance decreases pre
dictably with increase in voxel resolution.

4.1.2 Fragment-parallel voxelization

This observation of poor work-balance in unevenly tessellated scenes is what led

Schwarz and Pantaleoni to introduce complex tile-assignment and sorting stages

to their voxelization pipelines. Our fragment-parallel voxelization is based on the

observation that much of our triangle-intersection routine can simply be moved

to the fragment shader, providing the opportunity for vastly more parallelism.

Thus, we exploit the fragment stage of the OpenGL pipeline as a sort of ad-hoc

single-level of dynamic parallelism. There are several implementation particulars

76

required to ensure a gap-free voxelization, which will be discussed in a later section.

The performance results of our single-pass fragment-parallel implementation can

be observed in figure 4.7, and most noteworthy is the fact that it performs very

well on the exact scenes that the triangle-parallel voxelization struggled with, and

most poorly on scenes with large amounts of fine detailed geometry (XYZ RGB

Dragon & Hairball).

The fragment-parallel implementation is far more unique and must be adapted

to the pipeline in order to produce a correct voxelization. At present, only [CG12]

describe a similar approach. Our utilization of the fragment stage allows us to ben

efit from the rasterization and interpolation acceleration provided by the graphics

hardware. However, there are several issues we must concern ourselves with when

endeavoring to produce a “gap-free” voxelization, (1) gaps within triangles caused

by an overly oblique “camera” angle, and (2) gaps between triangles caused by

OpenGL’s rasterization rules.

, nYZ, nZX, dXY, dYZ, dZXAs in the triangle-parallel approach values n, nXY (forei ei ei ei ei ei

i = 0, 1, 2), dmin, and dmax are precomputed. However, in this implementation they

are calculated in the geometry shader, and passed as flat non-varying attributes

to the fragment shader. Essentially, we allow the rasterizer to take over for iterating

over the axes of the dominant planar projection, leaving the fragment shader to

confirm overlap with the dominant plane, calculate the depth intersection range

according to the desired separability rules, and confirm the remaining two planar

projections. In the pseudocode in figures 4.4 and 4.5, the portion of code that

would be moved into the fragment shaders goes from line 15 to line 20 in figure

77

4.4, and from line 14 to line 20 in figure 4.5.

Figure 4.7: Performance of fragment-parallel voxelization. This exhibits poor-
performance in scenes with large numbers of small triangles. Performance degra
dation is exacerbated as the ratio of voxel-size to triangle-size increases.

78

O
rt

h
o

g
ra

p
h

ic
 C

am
er

a

Orthographic Camera Orthographic Camera

v0.xy

v1.xy v1.xy

v0.xy
v0.yx

v1.yx swizzled
geometry

perspective
change

Figure 4.8: Naïve rasterization on input geometry can lead to gaps in the voxeliza
tion. This can be solved in two ways, the center image demonstrates swizzling the
vertices of the input geometry, while the image on the right demonstrates changing
the projection matrix.

Gap-Free Triangles We can solve the first problem, illustrated in figure 4.8,

in one of two ways, both of which rely on determining the dominant normal di

rection of the triangle. The first approach relies on constructing an orthographic

projection matrix per-triangle, which views the triangle against the axis of its max

imum projection as determined by the dominant normal direction. Alternately, we

can change the input geometry, again based on the dominant normal direction,

such that the XY plane is always the axis of maximum projection. This can be

accomplished by a simple hardware supported vector swizzle described below

⎧

vi,yzx nx dominant
⎪⎪⎪⎪⎪⎪⎪⎪2 ⎨

∀i=0vi,xyz = vi,zxy ny dominant (4.1)⎪⎪⎪⎪⎪⎪⎪⎪⎩vi,xyz nz dominant

79

However, we must be sure to “unswizzle” when storing in the destination tex

ture. Additionally, a similar triangle swizzling approach can be used to reduce the

number of cases taken in the [SS10] approach. With triangle swizzling, the num

ber of cases drops from 9 to 3, one for each of the 1D, 2D, and 3D cases. Figure

4.9 depicts the selection of the largest triangle projection based on the dominant

normal direction.

x

y

z

z

y

x

y

x

z

|nx|

|nz|

x

y

z

|ny|

pre-swizzle post-swizzle

n

v2

v0

v1

v1

v0

v2

Figure 4.9: The largest component of the normal n of the original triangle deter
mines the plane of maximal projection (XY, YZ, or ZX) and the corresponding
swizzle operation to perform.

Conservative Rasterization The second problem can be solved with conserva

tive rasterization. Conservative rasterization ensures that every pixel that touches

a triangle is rasterized, which is counter to how the hardware rasterizer works.

There are several approaches to overcome this, which generally involve “dilat

ing” the input triangle. [HAMO05] dilated input triangles by expanding triangle

vertices into pixel sized squares and computing the convex hull of the resultant

geometry. Tessellation of this shape can be computed in the geometry shader.

80

Alternately, Hasselgren also proposed computing the bounding triangle of the di

lated geometry from the previous approach and simply discarding in a fragment

shader all fragments outside of the AABB. [HHW09] proposed a similar approach,

computing the dilated triangle T ' by constructing a triangle of intersecting lines

parallel to the sides of the original triangle T at a distance of l, where l is half the

length of the pixel diagonal, see figure 4.10 for examples of these techniques.

v0̀

`v1

v2̀

v0̀

`v1

v2̀

v0
v1

v2

Figure 4.10: Various conservative rasterization techniques required in order to
produce a “gap-free” voxelization. The first two images are from [HAMO05], the
leftmost image shows the approach of expanding triangle vertices to size of pixel,
and tessellating the resultant convex-hull. The middle image simply creates the
minimal triangle to encompass the expanded vertices, and relies on clipping to
occur later in the pipeline. The rightmost approach is from [HHW09], and simply
expands the triangle by half the length of the pixel diagonal and also relies on
clipping to remove unwanted pixels.

With the Hertel approach the dilated vertices vi
' of T ' can be easily computed

as

� �

81

ei−1 eiv ' i = vi + l + . (4.2)
ei−1 · nei ei · nei−1

In our case working on a 2D triangle projection in a premultiplied voxel space

l will always be
√

2/2.

It should be noted that conservative rasterization has the potential to produce

unnecessary overhead in the form of fragment threads that are ultimately rejected

in the final voxelization intersection test. As triangles get smaller and l remains

constant, the size of the dilated triangle T ' to the size of the original triangle T

causes the ratio area(T)
area(T �) to become smaller. This ratio can be used to approximate

an upper bound on the expected efficiency of per-triangle fragment thread utiliza

tion. This goes part of the way to explaining the fragment-parallel technique’s

poor performance in highly tessellated scenes with many small triangles, but is

actually exacerbated further by poor quad utilization for small triangles. Since

texture derivatives require neighbor information, even if only one pixel of a quad

is covered, the entire quad is launched. This means that triangles smaller than a

voxel will utilize only 25% of the threads allocated to them before triangle dilation

is taken into account. After triangle dilation, thread utilization can be significantly

worse, see figure 4.11, and in scenes with millions of sub-voxel sized triangles, can

lead to massive oversubscription and poor performance.

Additionally, it was our observation that voxelization methods that relied purely

on raster-based conservative voxelization methods tended to be overly conservative

82

¯Figure 4.11: Sub-voxel sized triangle exhibiting thread utilization of only 8.3%
after triangle dilation, note, that this can actually get much worse depending on
the triangle configuration.

along their edges where clipping against the AABB couldn’t help them, resulting

in false positives, see figure 4.12. Since our approach maintains a computational

intersection test inside the fragment shader, these voxels are still culled.

Figure 4.12: Thin (6-separable) voxelization of the Conference Room scene illus
trating false positives (in red) resulting from a naïve conservative-rasterization
based voxelization.

83

Figure 4.13: Comparison of the relative performance of Triangle-parallel and
Fragment-parallel techniques. Note, where one technique performs poorly, the
other performs well.

84

4.1.3 Hybrid Voxelization

Comparing the performance of both single-pass techniques side-by-side, as illus

trated in figure 4.13, the inversion of strengths and weaknesses becomes even more

apparent. By using the fragment shader to increase the available parallelism, the

worst-case scenario for the triangle-parallel approach becomes the best case for

the fragment-parallel case. Conversely, the best-case for the fragment-parallel ap

proach is the worst case for the triangle-parallel approach. Thus, we logically arrive

at a hybrid approach, one in which large triangles are divided into fragment-threads

using the fragment-parallel technique, and small triangles are voxelized using the

triangle-parallel technique, thus avoiding poor thread utilization and oversubscrip

tion.

Triangle Classification

Triangle-Parallel
Voxelization

small tris

large tris Fragment-Parallel
Voxelization

ln
p

u
t

T
ri

an
g

le
s

O
u

tp
u

t
V

o
xe

liz
at

io
n

Figure 4.14: A simple classification routine run before the voxelization stage allows
the creation of a hybrid voxelization pipeline and utilizes the optimal voxelization
approach according to per-triangle characteristics.

We take care to preserve coherent execution among our shader threads with the

introduction of a classification stage to our pipeline prior to voxelization, see figure

4.14, which outputs corresponding index buffers according to each triangle’s classi

85

Triangle Classification

Triangle-Parallel
Voxelization

small tris

large tris Fragment-Parallel
Voxelization

ln
p

u
t

T
ri

an
g

le
s

O
u

tp
u

t
V

o
xe

liz
at

io
n

Voxelization

Figure 4.15: Our final hybrid voxelization implementation mitigates the cost pro
cessing the input geometry twice by immediately voxelizing input triangles classi
fied as “small” and deferring only those triangles considered to be “large.”

fication. These classified index buffers are then used to voxelize the corresponding

geometry using the appropriate technique.

Triangle Selection Heuristic The crux of the hybrid-voxelization approach

lies in the heuristic used for determining whether a triangle is most suitable for

voxelization using a triangle-parallel approach or a fragment-parallel approach.

The [SS10] approach is dependent on voxel extents of triangle bounding boxes,

however, we have already determined that the fragment-parallel approach will

handle all large triangles, and the triangle-parallel approach will handle all small

triangles.

The heuristic for the selection of a cutoff value can be approached in many dif

ferent ways, for instance, the size of the dilated triangle area (T ') most accurately

represent the number of potential voxel intersections to be evaluated in the frag

ment stage, but is not a fair representation of the amount of work required in the

86

triangle-parallel stage should the triangle be classified as small. Furthermore, the

dilated triangle has a minimum size, which must be considered as undilated tri

angles approach zero area. The 3D voxel-extents provide a good indication of the

amount of iteration required to voxelize a triangle in the geometry stage, however,

since the depth-range is calculated, the 2D-projected voxel-extents provide a closer

representation of the actual work performed. Additionally, we could consider the

ratio of area(T)
area(T �) , which, as it varies from 0 to 1, indicates very small to very large

triangles, respectively.

In our experiments, we found that simply considering the 2D projected area

of the triangle T worked best, and for most scenes, a cutoff value of just a few

voxel units squared provided a good starting cutoff value for triangle classification.

In figure 4.16 we can see the full range of voxelization performance vary from

that of the fragment-parallel approach at a cutoff of zero, to the performance

of the triangle-parallel approach once the cutoff is large enough to encompass

all triangles. Note that figure 4.16 represents an unreasonable range of cutoff

values; this is meant to illustrate the performance characteristics as the cutoff value

changes. Generally, there is a fairly large range of cutoff values corresponding to

near-optimal performance.

87

0

10

20

30

40

50

60

R
u

n
ti

m
e

 (
m

s)

Cutoff (voxels^2)

Hybrid Voxelization Performance of Crytek Sponza Atrium
@ 256^3 Voxel Resolution

0

2

4

6

8

10

12

14

0 10 20 30 40 50

optimal hybrid performance

~fragment-parallel performance ~triangle-parallel performance

Figure 4.16: Initially at zero, all triangles are classified as “large” and therefore
voxelized by the fragment-parallel shader. As the cutoff value (measured in voxel
area) increases, triangles are classified and assigned to either the triangle-parallel
or fragment-parallel approaches. As the cutoff continues to increase, performance
exhibits a stair-step pattern as triangles are reclassified. Eventually all triangles
are classified as “small” and performance reverts to that of the triangle-parallel
approach.

We are, however, most interested in the cutoff value that will provide the

minimal voxelization time, and these values tend to occur at much lower values.

Figure 4.17 shows only the earlier range of cutoff values. Examination of the data

confirms that for most inputs a cutoff value of just a few voxels squared provides

for optimal voxelization timing. It is conceivable that a bracketing search could

determine and adjust this value automatically [PTVF07].

88

0.01

0.1

1

10

100

1000

0 5 10 15 20 25

R
u

n
ti

m
e

 (
m

s)

Cutoff (voxels^2)

Hybrid Voxelization Performance @ 256^3 Voxel Resolution

Stanford Bunny

Conference Room

Stanford Dragon

Crytek Sponza

Large Triangle

Asian Dragon

Hairball

Figure 4.17: Logarithmic performance graph of the hybrid voxelization technique
displaying a lower range of cutoff values such that the optimal cutoff can be clearly
discerned.

Optimization In order to avoid requiring separate output buffers for all input

attributes, we output only index buffers which are then used to render only the

appropriate subset of the geometry with the voxelization method as determined by

the classifier. On many scenes this allowed us to achieve improved performance over

either the fragment-parallel or the triangle-parallel approach alone. However, when

we examine the performance of a scene ideally suited to the triangle-parallel ap

proach like the XYZ RGB Dragon, we observe that the best performance that can

be achieved with our triangle-classifier is approximately twice that of the triangle-

parallel approach alone. This can be explained by the amount of work it takes to

89

process the 7 million triangles in the scene. Each triangle is extremely small (gen

erally less than the size of a voxel) and takes relatively little work to voxelize, and

similarly little work to classify. In this case, run-time is dominated by the overhead

of creating threads, rather than the work done in each thread, and with our cur

rent approach we have doubled the number of threads to be created. Fortunately,

we can exploit the fact that in our classification, we employ the triangle-parallel

approach only for small triangles. Combined with the fact that the number of

small triangles in a scene almost always dominates the number of large triangles,

we can dramatically decrease the overhead of our hybrid voxelization pipeline.

As illustrated in figure 4.15, by moving the triangle-parallel voxelization into the

classification shader and deferring only the larger triangles to be voxelized by the

fragment shader, we effectively reduce a two-pass approach to a just slightly over

one-pass approach, meaning, that while all triangles are processed at least once,

only a few are processed twice. Furthermore, since the overhead of classification

and voxelization of small triangles is so low, this makes our hybrid approach com

petitive on all scenes, even those tailored for a triangle-parallel approach. The

full pipeline is shown in figure 4.18, illustrating the voxelization of the XYZ RGB

Dragon scene.

4.1.4 Voxel-List Construction

Though we are primarily concerned with producing a voxelization stored in a dense

3D texture, it can also be useful to produce a sparse “voxel-list.” Previously, it

90

Figure 4.18: Full pipeline including shader stages. Note that while there are two
“passes” only a very small subset of the geometry, that is classified as “large,” is
processed twice.

would be necessary to perform a dense voxelization and then perform a reduction,

such as HistoPyramid compaction [ZTTS06], in order to produce such a list. How

ever, with hardware support for atomic operations, this step can now be skipped.

We can instead use an atomic counter to increment the index of an output buffer

used to store the voxel’s coordinates. [CG12] used such a technique to generate

their “voxel-fragment-list,” which they then used to construct a sparse hierarchi

cal octree. With such an approach, multiple elements may refer to the same voxel

location, which are later merged in hierarchy creation. To avoid duplicate voxel

assignments, a dense 3D r32ui texture can be employed to provide mutexes at

each voxel location. By employing an imageAtomicCompSwap operation at the

voxel location, we can restrict incrementing the atomic counter to a single thread

accessing the voxel location. This can be beneficial when your voxelization in

cludes additional attribute outputs and there is not enough memory for a dense

91

3D texture for each attribute.

The reduced memory requirements of voxel-lists must be weighed against in

creased voxelization time. The use of atomic operations directly impacts voxeliza

tion performance, particularly in situations where many threads are attempting

to access the same voxel. We observed that the additional voxel culling provided

by a rigorous computational intersection test helped significantly in reducing the

number of write conflicts for the atomics to resolve. It should be noted that when

outputting attribute buffers, that on some architectures, correct averaging of at

tribute information (colors, normals, etc.) may require emulation of (as of yet)

unsupported atomic operations [CG12].

4.1.5 Attribute Interpolation

Attribute interpolation must be handled manually in the triangle-parallel ap

proach. But as a benefit of its usage of the graphics pipeline, the fragment-parallel

approach can exploit the fixed-function interpolation hardware provided by the ras

terizer. Since the fragment-parallel voxelization method relies on triangle dilation

to ensure a conservative voxelization, care must be taken to correctly interpolate

triangle attributes across the dilated triangle. To accomplish this, we calculate

the barycentric coordinates of the dilated triangle vertices v ' i with respect to the

undilated triangle vertices vi using signed area functions.

area (v ' i, vi+1, vi+2)
λi (v ' i) = (4.3)area (v0, v1, v2)

92

By applying the barycentric coordinates computed at the dilated triangle ver

tices v ' i to the vertex attributes, i.e. vertex colors, normals, or texture coordinates

ti, we can calculate corresponding dilated attributes t' i as follows

t' = λ0 (v ') t0 + λ1 (v ') t1 + λ2 (v ') t2 (4.4)i i i i

By passing dilated attributes in from the geometry shader to the vertex shader

in this manner, we ensure that attributes interpolate across the undilated region

of the dilated triangle in the same manner as they would on the undilated triangle.

This holds regardless of the dilation factor l applied.

4.2 Voxelization Performance

We tested our hybrid voxelization approach against several different models at

various voxel resolutions, and compared the results to purely triangle-parallel and

purely fragment-parallel implementations, as well as the data available from [SS10],

[Pan11], and [CG12]. We included the XYZ RGB Asian Dragon as an example of

a pathological worst case-scenario for the fragment-parallel approach, and we in

cluded a single scene-spanning triangle as a pathological worst case for the triangle-

parallel approach. All results were generated on an Intel Core i7 950 @ 3.07GHz

with an NVIDIA GeForce GTX 480. Table 4.1 shows the performance comparison

of the different techniques, and additionally the percentage of time spent in the

first and second pass of the hybrid voxelization approach, see figure 4.18. Both

Dragons, the Bunny, and the Hairball represent less than ideal conditions for our

93

Model Grid size
6-separating (thin) binary voxelization

Triangle-
parallel

Fragment-
parallel Hybrid @voxels2 Pass 1/Pass 2

Schwarz &
Seidel VoxelPipe

Crassin &
Greene (680)

Large Triangle
(1 tri)

1283

2563

5123

10.62
42.4
169.7

0.03
0.06
0.22

0.04 @na 36.1%/63.9%
0.07 @na 22.1%/77.9%
0.19 @na 12.0%/88.0%

XYZ RGB 1283 6.37 165.2 8.51 @2.0 99.9%/0.1% 11.36 21.2
Asian Dragon 2563 7.70 165.0 8.57 @1.7 99.7%/0.3% 14.73
(7,219,045 tris) 5123 9.80 164.6 10.3 @1.4 99.8%/0.2% 16.67 22.0
Crytek Sponza 1283 13.4 10.65 1.11 @2.8 87.7%/12.3%
Atrium 2563 53.2 11.13 1.80 @3.9 71.6%/28.3%
(262,267 tris) 5123 208.7 11.87 3.68 @3.1 52.8%/47.2%

Conference
(331,179 tris)

1283

2563

5123

9.23
36.04
141.2

11.47
11.62
11.94

1.41 @0.5 68.5%/31.5%
1.82 @1.7 69.2%/30.8%
3.01 @0.9 52.2%/47.8%

3.9

59.3

3.3

4.3

Stanford Bunny
(69,666 tris)

1283

2563

5123

0.28
0.82
3.12

1.58
1.55
1.82

0.19 @1.8 88.1%/11.9%
0.34 @4.5 91.6%/8.4%
1.08 @12.7 93.0%/7.0%

0.60
0.89
2.35

Stanford Dragon
(100,000 tris)

1283

2563

5123

0.25
0.51
1.61

2.13
2.09
2.25

0.26 @13.3 97.8%/2.2%
0.52 @5.9 93.4%/6.6%
1.25 @13.7 88.6%/11.4%

3.44
3.96
4.44

4.8

5.0

1.19

1.38

Hairball
(2,880,000 tris)

1283

2563

5123

7.09
13.73
33.47

74.8
67.1
68.4

7.37 @2.3 99.89%/0.11%
14.0 @2.4 99.94%/0.06%
33.9 @8.0 99.97%/0.03%

22.8

95.0

12.8

18.3

Table 4.1: Running time (in ms) for different voxelization approaches, blue indi
cates the fastest voxelization method. Voxelizations are binary and performed into
a single component dense 3D texture. The Large Triangle cutoff is listed as “na”
since there are no suitable triangles to be reassigned.

approach as they do not have a large distribution of triangle sizes, yet are able to

obtain better performance than the competing techniques in all but one instance.

In several cases, the purely triangle-parallel approach beat the hybrid approach,

which is understandable considering these scenes are ideally suited to the triangle-

parallel approach. It should be noted that in all such cases besides the pathological

worst case (the Asian Dragon), the hybrid approach was within 3% of the triangle-

parallel approach, indicating the low overhead of our multi-pass approach. Despite

its simple classification scheme, our approach provides a performance improvement

for binary voxelization over its competitors, including [CG12] which used superior

hardware (GTX 680). It should be noted that the cutoff values are likely to be

94

highly architecture dependent, we would expect them to change when executed on

Nvidia’s Kepler or AMD’s Southern Islands architecture.

4.3 Discussion of Voxelization

We implemented a wide variety of voxelization and conservative rasterization tech

niques in our experiments. Our implementations targeted the capabilities described

in the OpenGL 4.2 specification. Our approach relied on the ability to perform

texture writes to arbitrary locations enabled by the image API. Our classification

approach relied on indirect buffers to enable the asynchronous execution of the vox

elization stage. A benefit of our OpenGL implementation is that it avoids the per

formance penalty of context switching and implicit synchronization points present

in a CUDA or OpenCL implementation. With the introduction of OpenGL 4.3,

the triangle-parallel approach could easily be implemented in a compute shader,

but at present our experience has been that compute shaders incur an unknown

overhead and are significantly less efficient than existing techniques.

Another application of our initial classification scheme, see figure 4.14, could be

to “pre-classify” scenes. Then by maintaining two index-buffers, hybrid-voxelization

could be employed absent the cost of classification. This would be most sensible

when applying a non-voxel dependent triangle classifier, in scenarios where the

orientation of the voxels may change relative to the scene geometry.

We found that several of our results agreed with [SEA08, HHW09], that geome

try amplification of the first Hasselgren technique led to performance degradations.

95

We also found that atomic operations more greatly impacted the triangle-parallel

approach, likely due to the fact that each triangle-parallel thread is responsible for

more writes than each fragment-parallel thread.

This chapter has shown how a GPU-accelerated computational surface voxeliza

tion can be achieved without resorting to CUDA or OpenCL. Our hybrid approach

to voxelization leverages the strengths of the graphics pipeline to improve paral

lelism where it is most needed without sacrificing the quality of the voxelization.

It exhibits superior performance to existing techniques, especially on scenes with

non-uniform triangle distributions.

96

Chapter 5: Voxel Storage, Sampling, & Mipmapping

Recasting the scene into a voxel format has many advantages, but also, some

critical disadvantages, mainly high memory requirements. Dense 3D textures offer

many advantages such as the availability of hardware for interpolation, but unfortu

nately allocate data for unused portions of the scene. Hence it is prudent to explore

techniques for efficient sparse voxel storage. Another consideration is the format

of the data being stored per voxel. A simple dense 5123 texture storing a RGBA

color value per voxel takes up over 500 megabytes when stored in a low precision

RGBA8 texture, and over 2 gigabytes in a medium precision RGBA32F texture,

already exhausting the 1.5 gigabytes of memory available on a typical GTX 480.

These values become 3GB and 12GB respectively for an anisotropic voxel storage

scheme which stores 6 directional color values per voxel. If it becomes necessary

to store additional voxel attribute data (such as diffuse and emissive color values,

and normals) then these already prohibitive storage requirements are multiplied

several fold over again. Also, since texture filtering hardware on the GPU is fixed

to function with specific texture formats, we are unable to define generic voxel

attributes in a flexible manner as we may like. Instead we must make concessions

to available functionality and hardware resources in order to “pack” our data into

available texture formats.

97

5.1 Voxel Storage

Utilizing voxel storage that can be stored in hardware supported texture formats is

critical for performance. Not only does this enable trilinear interpolation within a

texture level, but assuming we use a consistent format across all texture hierarchy

levels, we can enable quadrilinear interpolation. Adapting our storage mechanisms

to enable the available texture filtering hardware allows us to produce smooth,

visually pleasing results without adding computational overhead.

5.1.1 Isotropic Voxel Storage

Isotropic voxel storage is the simplest storage method and also has the lowest mem

ory requirements. Essentially all we are storing is an approximation of the diffuse

lighting at the voxel. Thus we are able to store it inside of a single RGBA8 tex

ture. We are able use this texture format with the ARB_shader_image_load_store

functionality, even though it is not explicitly supported, by casting it to a sup

ported R32UI format and manually converting and packing the appropriate bits.

As our voxelization approach has the potential to create many threads attempt

ing to write to the same location, we must find a way to resolve these conflicts.

The simplest approach is to simply take the maximum value at the voxel using

the imageAtomicMax function, this will ensure a consistent voxelization, albeit at

the cost of sacrificing accuracy. Ideally we would want an imageAtomicAverage

function, but one does not exist. However, in this case we may emulate the same

functionality as described in [CG12] using the imageAtomicCompSwap function,

98

Figure 5.1: Images of the isotropic voxelization output using the builtin
imageAtomicMax functionality on the left vs the emulated imageAtomicAverage
on the right. Note that the imageAtomicMax version has a tendency to saturate
the voxel color, but overall the result is quite acceptable. Both voxelization are
performed using the fragment-parallel voxelization approach at a voxel resolution
of 5123.

see Figure B.1 located in Appendix B. Effectively what this code does is create a

“spinlock,” and updates the running average inside the loop until the lock stops

“spinning.”

We can observe the quality difference between emulated atomic average and

the builtin atomic max functionality in Figure 5.1, and while there is a discernible

quality difference between the two, it is surprisingly, not that noticeable. Consid

ering that the initial voxelization is simply the input to a hierarchy construction

from which filtering indirect illumination results are sampled, the quality differ

ence becomes even more difficult to discern. Another consideration for the atomic

max implementation is that the texture components should be swizzled such that

the alpha component comes first, that is RGBA becomes ARGB. This can be

accomplished either in the shaders directly, or with the EXT_texture_swizzle ex

99

tension. The primary concern with performing the swizzle during voxel storage

is to ensure that the appropriate unswizzle is performed during voxel access. In

practice, however, while it makes sense to swizzle the components such that the

alpha component dominates the atomic max comparison, it makes a virtually in

distinguishable difference in quality in most cases. Ultimately, the decision for

which method is selected to ensure a consistent voxelization output regresses to a

familiar tradeoff between quality vs. computation time. The performance penalty

incurred by the image atomic average emulation can be observed in Figure 5.4 in

Section 5.1.4.

5.1.2 Anisotropic Voxel Storage

As described in [CNS∗11], anisotropic voxel storage stores a color value for each

voxel cube face. With this information, we can approximate a directional rep

resentation for the radiance emitted from the voxel. But this does increase our

storage requirement by at least a factor of six. This can be accomplished in sev

eral ways. The most obvious is to have 6 RGBA8 textures, one for each set of voxel

faces. However, this comes with the caveat that it will take multiple passes to

mipmap (at least 2) as each reduction requires that both the previous and current

level be bound to an image unit, for a total of 12, exceeding the fixed limit of 8.

Alternately, we could over-allocate a single texture, that is allocate a single texture

that is 6 times larger than required and implement a custom indexing scheme such

that each anisotropic voxel face was stored in its own section of the larger texture.

100

Figure 5.2: Anisotropic voxels initialized based on dominant normal direction and
visualized as spheres using the method described in Section 5.2.2.

Instead of these approaches we adopt the new ARB_bindless_textures available

on the latest generations of GPU hardware which allows us to exceed the previous

image unit limitation.

Since we now have a directional storage format, we can employ a more sophisti

cated storage scheme than the “store color in voxel” isotropic approach. We can use

the surface normal to select the dominant normal direction and store the computed

color value in the appropriate face as seen in Figure 5.2. We can further elaborate

on this approach and weight the color contribution by the normal components and

store the results in the faces pointed at by the normal. We have experimented with

both of these approaches. They both have the caveat that there is the potential

for an active voxel to have uninitialized faces, which raises the question of how

101

to appropriately deal with these faces during mipmapping, (discussed in Section

5.3.2). For the sake of an objective comparison of the mipmapping process, we

elected to treat the base level of the anisotropic textures as isotropic and duplicate

the computed color value across the faces, allowing the anisotropic directionality

of the voxels to be captured in the hierarchy construction process. Similar to the

isotropic voxels, since the anisotropic voxels rely on the RGBA8 texture format, we

again have the option of using the builtin atomic max function or the emulated

atomic average as shown in Figure B.1 in Appendix B.

5.1.3 Spherical Harmonic storage

As in [KD10], we limit our spherical harmonics to 2 bands. There are several

reasons for this, the primary one being that the number of coefficients of spherical

harmonics increases quadratically with the number of bands. With two bands we

at least retain the possibility of fitting the coefficients of 2 band spherical harmonics

in a 4 component texture. However, it quickly gets more complex than that. Un

fortunately, an RGBA8 texture does not provide sufficient accuracy to store spherical

harmonic coefficients, and we are forced to resort to the use of a format that stores

32 bit floating point values. RGBA32F is the obvious candidate, unfortunately, like

RGBA8, it is not natively supported by image atomic operations, and even worse

it can neither be cast to another format, nor can it be “viewed” as another format

(using GL_ARB_texture_view) supporting atomic operations. We can, however,

use R32F with atomic operations thanks to the NV_shader_atomic_float exten

102

sions, though with 4 coefficients required for each color channel (R,G, and B), this

implies using at least 12 volumetric textures if we don’t want to resort to clever

indexing schemes. Ultimately, we implemented this twice, first relying on a fewer

number of textures and a modified indexing scheme, but this was found to lead

to extreme performance degradations due to incoherence in texture accesses as

maintaining an ordering that allowed for hardware filtering required placing ad

jacent components (e.g. R and B) at a stride equal to the texture dimensions.

This scheme was successful for prototyping but ultimately, bindless textures were

adopted, via the extension ARB_bindless_textures, allowing us to circumvent

the image unit limitations and increasing performance by an order of magnitude.

Since we are now using a medium precision floating point texture format (high

precision being ‘double’) on Nvidia hardware, we exploit the availability of atomic

floating point addition operations to sum spherical harmonic coefficients. Un

fortunately, all attempts to create a clever scheme to either average or perform

more complex spherical harmonic product operations over these values in the same

shader invocation failed. Since we could no longer use the alpha bits of our texture

as a “spinlock,” we relied on creating a dedicated mutex texture, which allowed us

to create a unique lock at each texture location using the imageAtomicCompSwap

function, which should theoretically have allowed us to safely update the running

average without interference from other threads. Tragically, it would seem that

deficiencies in either the shader compiler or hardware rendered such approaches

moot, and without access to a functioning debugger we were unable to accurately

diagnose the problem. It turns out, however, that we are not alone in experiencing

103

Figure 5.3: Visualization of the spherical harmonic functions stored at each voxel
location. Each function is represented by a raytraced sphere and the color values
are sampled from the spherical harmonic function at each location based on the
normal. The Crytek-Sponza scene is shown in the upper left, the Sibenik Cathedral
is shown in the upper right, while the Conference Room is shown in the lower left
and the Ruins scene lower right. Note, spheres are unlit and unshaded.

difficulties trying to exploit such cutting edge features, for more information see

A Digression on Divergence [Fol13]. Because of these issues, we were forced to

take the extremely pedestrian route of simply normalizing the spherical harmonic

coefficients in a second pass post-voxelization.

Much as with the anisotropic voxels, we can use the surface normal to encode

directional information into spherical harmonics, the results of which can be seen

in Figure 5.3. However, since these voxels are initialized from planar surfaces with

only one normal direction, the result is often a voxel that is colored on one side

104

and simply black on the other side. This leads to problems during mipmapping

as this lack of information is interpreted as lack of illumination and the dark

portion of the spherical harmonics are projected onto their parent resulting in a

significant darkening of the scene. So, much as with the anisotropic voxels, we

effectively consider the base level of the spherical harmonic voxels to be isotropic

as well and allow the hierarchy construction process (mipmapping) to capture the

directionality information.

Considering the base level to be isotropic, and that we must already perform

a second pass to normalize our values, we can optimize our spherical harmonic

storage format. Instead of initializing the spherical harmonics directly, we perform

the same isotropic voxelization as in Section 5.1.1, and then transfer the results to

a spherical harmonic storage format. Initially, we replaced our 12 R32F textures

with 3 RGBA32F textures, surprisingly however, this led to a moderate perfor

mance decrease, and thus we scrapped this approach. Ko et al. [KKZ08] describe

quantization techniques for storing spherical harmonic coefficients efficiently, how

ever, they targeted precomputed rendering techniques, and thus had the luxury

of preprocessing their data. In our application we found the minimum, SHmin,

and maximum, SHmax, spherical harmonic coefficients for several scenes, padded

the results, and determined a conservative SHrange value. By dividing by SHrange

on storage we reduce the potential range of value from [−FLT_MAX, FLT_MAX] to

[SHmin, SHmax]. This reduction in range allows us to store our spherical harmonic

coefficients in a RGBA8 texture without significant loss of accuracy. To recover our

original values we simply multiply by SHrange. We have effectively reduced our

105

spherical harmonic storage costs by a factor of four, which makes it cheaper in

total memory cost than anisotropic voxels.

5.1.4 Voxelization Performance & Costs

Since we have now described three radically different voxel storage formats, two of

which have two mechanisms for computing voxels (imageAtomicMax and imageAtomicAvg),

and a third which even has different storage targets; we must characterize the per

formance costs of these different approaches. These results can be seen in Figure

5.4, note that these voxelizations are not using the fully optimized voxelization

technique described in Chapter 4 as this adds significant complexity, which is dif

ficult to characterize, especially in the presence of so many atomic operations.

5.2 Voxel Sampling

Each of our three voxel storage methods requires its own sampling method. The

isotropic voxels by definition have no dependence on sampling direction, while the

anisotropic and spherical harmonic methods must both take into account direc

tional sampling.

5.2.1 Isotropic Sampling

As there is no directionality to isotropic storage, the sampling scheme is trivial.

The only thing worth noting here is that if the emulated atomic averaging scheme

106

Figure 5.4: Performance of a fragment parallel voxelization for several computer
graphics scenes. In general, the more complex storage formats have a higher vox
elization cost. Also, the emulated image atomic average functionality can be
severely detrimental to performance depending on degree of thread contention
during voxelization. For example, the Conference Room scene relies on pure tri
angle density (as opposed to normal maps) to add additional detail to the scene,
which causes severe busy-waiting in the atomic average’s spin-lock. Note, that the
RGBA8 spherical harmonic voxelization outperforms isotropic voxelization, and is
competitive with isotropic voxelization.

107

was used to initialize the isotropic voxels, the alpha component of the texture will

not contain the expected value. Instead it will contain the count of the number of

shader threads that attempted to write to the voxel location. In effect, the alpha

component has become an indication of the amount of thread contention for that

particular voxel during the voxel phase. In practice, we can generally assume base

level voxels are opaque, ignore the alpha term, and sample the RGB components.

5.2.2 Anisotropic Sampling

It is not explicitly stated what sort of anisotropic sampling scheme is used by

Crassin et al. in [CNS∗11]. The technique we have selected is described by Mitchel

et al. in [MMG06] and used for sampling “ambient cubes.” It is essentially a simple

weighted blending of the six directional face colors as a function of the world space

direction, an example in 2D can be seen in figure 5.5. It is worth noting that

spherical harmonics are directly mentioned in [MMG06] as a potential method for

improving fidelity. GLSL code for the anisotropic sampling technique is listed in

Figure B.2 in Appendix B.

5.2.3 Spherical Harmonic Sampling

Directional sampling for spherical harmonics is well defined. We shall describe it

briefly here, for more detailed reference see Section 2.2, or Stupid SH Tricks [Slo08]

and Spherical Harmonic Lighting: The Gritty Details [Gre03]. Since we are using

108

Figure 5.5: A 2D anisotropic voxel with per-face color values. Image courtesy of
[Mit12].

only a 2 band spherical harmonic representation, we only need functions from the

first two rows of Table 2.1 from Section 2.2. Essentially we take the dot product

of the first four spherical harmonic functions y0...3 (i.e. the first two bands) with

the components of the normalized negative direction vector substituted in with the

functions recovered from the voxel storage, that is:

⎛ ⎞
3 dy 3 3 dz dx1,
√
√ , −

√
√ ,

√
√

2 π 2 π 2

⎞⎛
· (Vr0 , Vr1 , Vr2 , Vr3)⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎠

R

G

⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎠

π √
3 dy

√
3 dz

√
3 dx√ √ √1, 2 2 2

· (Vg0 , Vg1 , Vg2 , Vg3) (5.1)
=
 , −
 ,

π π π
3 dy 3 3 dz dx1,
√
√ , −

√
√ ,

√
√

2 π 2 π 2

· (Vb0 , Vb1 , Vb2 , Vb3)B

π

where dd is the normalized direction vector and Vr0...3 , Vg0...3 , and Vb0...3 are the

spherical harmonic coefficients for each color component, (R, G, B), stored in the

voxel location, V . Note, the RGB components must also be clamped from 0 to 1.

Additionally, GLSL code for spherical harmonic sampling is listed in Figure B.3 in

Appendix B.

109

input geometry voxelization mipmapping mipmapping

Figure 5.6: Illustration of isotropic voxel mipmapping, note the emergence of the
red-green wall problem.

5.3 Voxel Mipmapping

After selecting what to store in the voxel and how to store it, the challenge then

falls to the construction of a reasonable filtered hierarchy in which each element

provides an approximation of the elements below it. There is necessarily a loss of

accuracy in this process, but the challenge remains to preserve essence of the data

contained therein.

5.3.1 Isotropic Mipmapping

Isotropic mipmapping is relatively straightforward, in fact there is not much more

to be done other than to average voxel color values as weighted by their opacity.

While simple, this approach does lead to several undesirable artifacts such as the

red-green wall problem illustrated in Figure 5.6, which can result in two adjacent

walls being represented as yellow voxels higher up the mipmap hierarchy. This

problem applies to opacity values as well. If voxel opacity is averaged, it can turn

110

anisotropic
voxels

anisotropic
mipmapping

Figure 5.7: Illustration of the results of directionally dependent anisotropic
mipmapping.

opaque walls transparent and lead to light leaking.

5.3.2 Anisotropic Mipmapping

Anisotropic mipmapping is slightly more involved. As we are not employing a

brick-map storage scheme, there is no need for the transfer of illumination to

adjacent bricks. The process is described in [CNS∗11] and mentioned here in brief

for the sake of completeness. As discussed in section 5.1.2, anisotropic voxels store

6 channels of directional values, one per major direction. The voxel contents are

then filtered anisotropically along the major axial directions, as in figure 5.7, for

more details see [Yeu13].

111

5.3.3 Spherical Harmonic Mipmapping

While it can be tempting to try and apply an approach such as a spherical harmonic

product projection as described in section 2.2.2, this has the undesirable property

that the result of a spherical harmonic product is non-commutative, so we will

arrive at different results based on the ordering of our operations. Instead we take

an approach more akin to the spherical harmonic propagation method outlined in

[KD10]. Although instead of projecting the contribution of a spherical harmonic

function onto the faces of the neighboring voxels, we are instead projecting the

contribution of the (up to 8) spherical harmonic functions onto the faces of the

parent voxel in which they are contained. This involves (assuming all interior voxels

are active) 8 projections onto 6 faces for 3 sets of spherical harmonic coefficients.

A 2D illustration of this concept can be seen in figure 5.8.

For all eight interior voxels, we must calculate the solid angle of each of the 6

faces of the larger voxel as seen from the unit sphere (i.e. the spherical harmonic

function inside the smaller voxel). This solid angle is referred to as the subtended

solid angle of the shape. We calculate this angle analytically using integration.

First we set up the geometry by assuming that the center of the voxel we are

projecting from lies at (0, 0, 0) inside a voxel with an edge length of 2, meaning that

the parent voxel has an edge length of 4. Figure 5.9 illustrates this construction

for projections onto the six faces of the parent voxel for the top-left-front child

voxel which defines the origin.

First we construct the integral for the back face projection. We integrate the

112

Figure 5.8: 2D projections onto each of the faces of a higher level (parent) voxel
by the child voxels.

113

(-1,-3,-1)

(-1,1,-1)

(-1,1,1)
(-1,1,3)

(-1,-1,-1)
(1,-1,-1)

(3,-1,3)

(0,0,0)

(3,-3,3)

Back face projection

(-1,-3,-1)

(-1,1,-1)

(-1,1,1)
(-1,1,3)

(-1,-1,-1)

(3,-1,3)

(0,0,0)

(3,-3,3)

Front face projection

(-1,-3,-1)

(-1,1,-1)

(-1,1,1)
(-1,1,3)

(-1,-1,-1)
(1,-1,-1)

(3,-1,3)

(0,0,0)

(3,-3,3)

Right face projection

(-1,-3,-1)

(-1,1,-1)

(-1,1,1)
(-1,1,3)

(-1,-1,-1)
(1,-1,-1)

(3,-1,3)

(0,0,0)

(3,-3,3)

Left face projection

(-1,-3,-1)

(-1,1,-1)

(-1,1,1)
(-1,1,3)

(-1,-1,-1)
(1,-1,-1)

(3,-1,3)

(0,0,0)

(3,-3,3)

Bottom face projection

(-1,-3,-1)

(-1,1,-1)

(-1,1,1)
(-1,1,3)

(-1,-1,-1)
(1,-1,-1)

(3,-1,3)

(0,0,0)

(3,-3,3)

Top face projection

(1,-1,-1)

Figure 5.9: All 6 projections for the top-left-front voxel. Voxel centers are blue
spheres, SH projections are in green, while ddface vector are shown in blue traveling
from the voxel center to the face center (in red). Note, the ddface vectors in this
diagram are not normalized.

114

radiance of its surface points p = (x, y, z), in this case z is a constant of value 3,

while x ∈ [−1 . . . 3] and y ∈ [−3 . . . 1], so we construct our integral as follows:

ˆ 3 ˆ 1

Ωbackface = L (p) dp
−1 −3 ˆ 3 ˆ 1 (dnbackface · p) 1 = 2 dx dy

|p| |p|−1 −3 ˆ 3 ˆ 1 ((0, 0, 1) · p) 1 = 2 dx dy
−1 −3 |p| |p|ˆ 3 ˆ 1

−1 −3

z
 =
 3
2

dx dy

(x2 + y2 + z2)ˆ 3 ˆ 1 3 =

−1 −3
dx dy
 3

2(x2 + y2 + 9)
= 1.074793009

We follow a similar construction for the front face projection, except in this

case z = −1 while x and y span the same values:

115

ˆ 3 ˆ 1

Ωfrontface = L (p) dp
−1 −3 ˆ 3 ˆ 1 (dnfrontface · p) 1 = 2 dx dy

|p| |p|−1 −3 ˆ 3 ˆ 1 ((0, 0, −1) · p) 1 = 2 dx dy
|p| |p|−1 −3 ˆ 3 ˆ 1

−1 −3

−z
 =
 3
2

dx dy

(x2 + y2 + z2)ˆ 3 ˆ 1 1 =

−1 −3
dx dy
 3

2(x2 + y2 + 1)
= 3.113997196 (5.2)

Now we can repeat this process 4 more times for the other four faces if we wish,

and then another 42 times for the seven other voxels and their projections, or, we

can observe that in all configurations there are actually only ever two different solid

angles, which we shall term Ωnarrow and Ωwide, which correspond to projections on

far and near faces respectively, this holds for all voxels. To recap:

Ωnarrow = Ωfarface = 3.113997196

Ωwide = Ωnearface = 1.074793009 (5.3)

As a sanity check we can sum up the subtended solid angles of all the faces:

� �

116

∀facesΩface = 3Ωnarrow + 3Ωwide

= 3 ∗ 3.113997196 + 3 ∗ 1.074793009

= 12.566370615

= 4π (5.4)

which is the total solid angle of a sphere in steradians, so we can be confident

that our calculations are correct. Now, armed with the subtended solid angles (all

two of them) for the 48 possible projections, we can begin the task of creating

a single spherical harmonics function from this information. The only additional

information we need for this is the normalized direction vectors from the centers of

the child spherical harmonic functions to the faces of the parent voxel, ddface, and

the coefficient’s of the projection of a cosine lobe, C (θ), pointing in the direction

of the z-axis. For the calculation of the cosine lobe coefficients we refer our reader

to Useful Results in Spherical Harmonics [Ins10]. From [Ins10], we can compute

' 'the coefficients of the projection of a rotated lobe C with coefficients c0...3 such

that the the peak of the lobe points along the direction vector dd as:

√ � � �
π π π π' ' ' '(c0, c1, c2, c3) = , ddy, ddz, ddx (5.5)2 3 3 3

Considering each spherical harmonic function as a VPL, in order to find the

VPL for the parent voxel, we must first determine the VPLs representing the

117

contribution of every active child voxel onto every face of the parent voxel. After

determining every directional VPL from every active child voxel to each face of

the parent voxel, we can then sum the contributions of all these VPLs to arrive at

a single VPL representing the parent voxel.

More formally, let us consider the parent voxel P with child voxels Vi, where

i ∈ [0 . . . 7], each with three sets of spherical harmonic coefficients for each color

band, Vr0...3 , Vg0...3 , and Vb0...3 , and similarly for the SH coefficients of P . We

define the vector Vi,r, as the vector of red SH coefficient for voxel V , and use

corresponding notation Vi,g and Vi,b for green and blue. That is

Vi,r = (Vi,r0 , Vi,r1 , Vi,r2 , Vi,r3)

Vi,g = (Vi,g0 , Vi,g1 , Vi,g2 , Vi,g3) (5.6)

Vi,b = (Vi,b0 , Vi,b1 , Vi,b2 , Vi,b3)

and for any given child voxel, Vi, let us consider the normalized direction from its

center to the center of the face we are projecting onto to be ddface. Then we define

the function SH to evaluate the spherical harmonic coefficients of a face as:

⎛ ⎞√ √ √
3ddface,y 3ddface,z 3ddface,x ⎠SH ddface = ⎝1, − , , − (5.7)2
√

2
√

2
√

π π π

and the function SHcos to evaluate the spherical harmonic coefficients of the cosine

 � �

� �

118

lobe in the normalized direction ddface as:

√

ddface,z, −

�
π ddface,x3 (5.8)
π π π

SHcos
ddface

ddface,y,2= , −
 3
 3

Finally, this allows us to express the summed spherical harmonic coefficients for

the parent voxel, P , as:

⎞⎛⎞⎛ 7
i=0 ∀faces

 Ωface SH ddface · Vi,r SHcos
ddfacePr0...3

Pg0...3

⎜⎜⎜⎜⎜⎜⎝

⎜⎜⎜⎜⎜⎜⎝=

⎟⎟⎟⎟⎟⎟⎠

⎟⎟⎟⎟⎟⎟⎠

SH
 ddface · Vi,g SHcos

ddface
 7

i=0 ∀faces
 Ωface (5.9)
 7

i=0 ∀faces
 Ωface SH ddface · Vi,b SHcos

ddfacePb0...3

Once we have the summed spherical harmonic coefficients for the parent voxel

P , we must normalize them, which is accomplished simply by a division by the

number of active voxels contributing to the sum (i.e. average the results).

5.4 Sparse Mipmapping Optimizations

Instead of naively processing an n3 number of voxels when constructing our mipmap

hierarchy, we can output an active-voxel-list at each mipmap level. The active

voxel-list consists of only those voxel locations which must be processed in the

next mipmap level. This is accomplished using what we shall term “mutex tex

tures” and hardware supported high performance atomic counters provided by the

ARB_shader_atomic_counters extension.

119

Active-Voxel Mipmapping

Voxelization

ln
p

u
t

T
ri

an
g

le
s

active-voxel-list

active-voxels

Figure 5.10: Implementation of an optimized voxel-mipmapping scheme which
relies on the output of active-voxel-lists at each stage of the voxel-hierarchy.

120

The mutex texture is necessary to ensure that during the voxelization pro

cess the active-voxel-list is appended with the location of a voxel only once for

each active voxel (in the next miplevel), as opposed to each time the voxel is

accessed (as many threads will try to write to the same voxel location). The

imageAtomicCompSwap operation is used on the mutex texture to uniquely “lock”

a voxel location. The atomic counter is then incremented to provide a unique

location to output to the “append buffer” (i.e. the active-voxel-list). The loca

tion of the voxel is then written to the active-voxel-list. What we are left with is

a list of sparse active-voxel locations, i.e., only the voxels that actually need to

be processed. By disabling the rasterizer and rendering a point list of only these

active-voxel locations, we can sparsely process the relevant geometry stored inside

our dense textures, see figure 5.3. While the addition of more atomic operations

during voxelization does increase voxelization times, by employing this technique

during hierarchy creation, we can drastically speed up the mipmapping process,

resulting in an overall speedup, see Figure 5.11. In addition to outputting a sparse

active-voxel-list for the next miplevel during voxelization, we additionally create a

sparse voxel list for the current level. This is useful as it allows for sparse processing

of the active voxels without processing the entire volume.

121

Figure 5.11: Combined performance of voxelization and mipmapping with active-
voxel-lists disabled and enabled for several scenes and voxel storage formats. Note
that for all voxel formats (besides isotropic) there is a net gain in performance for
all scenes. Furthermore, for the spherical harmonic cases the active-voxel-list can
be used in the post-voxelization step (normalization for 12xR32F and transfer for
3xRGBA8) resulting in an improvement in overall voxelization time as well.

122

Chapter 6: Voxel Based Illumination

Recently, voxel based methods have gained prominence among methods to com

pute global illumination solutions. This has been underscored by their success in

commercially shipping game engines, notably the CryEngine in the case of Light

Propagation Volumes [KD10], and tech demos in the case of the Unreal Engine

and Voxel Cone Tracing [Mit12]. In this Chapter, we will review the underlying

technique (Section 6.1), in addition to demonstrating its application to several il

lumination effects. Images depicting the incremental addition of voxel cone tracing

based illumination effects can be seen in Figure A.3 and Figure A.4 in Appendix

A.

6.1 Voxel Cone Tracing

Cone tracing provides an extremely high-performance alternative to ray tracing.

As opposed to tracing many infinitesimally small rays, finding an approximate

sampling over an area simply requires setting the appropriate cone aperture. The

only caveat is that you must have an appropriate volumetric, hierarchical proxy of

your scene to sample from. Fortunately, we have covered this in previous chapters

(cf. Chapter 4).

Cone tracing is similar to volumetric ray-casting, save that we use the sample

123

Figure 6.1: Geometric construction of samples, p0, and p1 along a cone of aperture
θ degrees in direction ωd . Note that the previous distance and radius is used to find
the next sample location.

distance, d, from the originating point, x, and the cone aperture, θ, to determine

the radius, r, of the sample point, p, which is, in turn, used to calculate the correct

Level-of-Detail (LOD) to sample from (i.e. the correct mipmap level). The basic

geometry of this construction is shown in Figure 6.1. We can easily compute the

radius r = d · sin θ
2 ; the radius of a sample point represents one half of the voxel

extent, thus to compute the appropriate LOD level to sample from we take the

base 2 logarithm of the sample’s diameter or lod = log2 (2 · r).

We are able to compute the appropriate radius for the second sample, p1, based

on the aperture and value of the first sample, by exploiting the common ratios of
sin θ

r0 r1 2the similar right triangles, = . That is r1 = (d0 + r0) , the second
d0 d1 1−sin θ

2

part of the expression remains constant for the evaluation of the cone and can be

precomputed. We refer to this as the cone ratio, and through repeated application

124

Figure 6.2: Illustration of the voxel cone tracing technique and the correspondence
between the sampling radius of the cone and the quadrilinearly interpolated voxel
value.

sin θ
2we can determine the points and radii along the cone, i.e. ri+1 = (di + ri) .1−sin θ

2

Thus in this manner we take successive samples p0, p1, . . . , pn along the cone sam

pling from the voxels volume, V , along the cone. For the shadows we are only

concerned with the alpha component Vlod,α [pi], while for diffuse interreflection we

would be interested in the color value Vlod,xyz [pi]. The sample is then quadrilin

early interpolated (trilinearly interpolated along spatial dimensions, then linearly

interpolated between mipmap levels) by the texture filtering hardware. This sam

pling approach is illustrated in Figure 6.2. Additionally, GLSL code for a voxel

cone tracing routine is listed in Figure B.4 in Appendix B.

125

6.1.1 Avoiding self intersection

Due to the volumetric nature of the voxelization, care must be taken to ensure

that initial sampling points are not sampled within the voxels representing the

geometry the ray is exiting from, see Figure 6.3. While we can simply stretch out

the starting distance, ds, shown in Figure 6.1, this doesn’t necessarily guarantee

that we will avoid sampling inside of the voxels we are trying to exit. Since a voxel

occupies a fixed space, and the provoking geometry can intersect any part of the

voxel, we must ensure that the first sampling point is at least the height of a voxel

plus the minimal sampling radius (half a voxel) above the plane defined by the

normal and the ray origin. However, when it comes to shadows, there’s often a

need for a fudge factor, so we set this value, f , to the distance of 1.5 voxels and

allow it to be manipulated by the user.

Thus to compute the initial starting distance, we take one and a half, or f ,

times the size of the voxel times the dot product of the surface normal (not the

bump-map normal) with the direction vector, assuming both are normalized:

f |v|
ds = (6.1)(dn · ωd)

An additional advisable practice is to clamp the initial distance between some

minimum, i.e. fmin |v|, and some selected maximum, fmax |v|. This will prevent

the cases where dn · dω approaches zero, and when the ds becomes too large and tries

�

126

Figure 6.3: Illustration of technique

to sample outside of the volume, thus equation 6.1 becomes:

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩

fmin |v| if dn · dω > 1

ds = fmax |v| if dn · ω <d fmax (6.2)
fmin

fmin|v| otherwise(n·ω)

Note that we have specified |v| as the size of the voxel, which is an indicator of

the minimal length of travel needed to exit a voxel. This value differs depending

on the selected voxelization method. If the voxelization is conservative, |v| should

2 2 2be the voxel diagonal, that is |v| = v + v + v . But if we are using a thin,x y z

6-separating voxelization, |v| should be the length of the longest side of the voxel,

as this is the minimal length needed to exit the diamond inscribed inside the voxel.

This approach works extremely well when tracing specular cones (Section 6.5),

works well on diffuse cones (Section 6.4), but does not work so well on ambient

occlusion (Section 6.3), as the occlusion effect is too sensitive to the presence of

self-occlusion. Since both diffuse interreflection and ambient occlusion can be cal

culated in the same pass, we must resort to a less elegant trick of simply shifting

127

the starting position, x, some distance, f , along the normal for both. For shadow

ing, this technique can be helpful for light sources near the geometry, but causes

artifacts for distant light sources.

6.1.2 Alternate Diffuse Cone Tracing

As will be discussed shortly in section 6.4, diffuse cones are generally traced at a

wider cone aperture, commonly 60°, around a predetermined set of cone directions.

At such large apertures, the challenge of avoiding self-illumination through self-

intersection becomes even greater. Even if we avoid self-intersection with the first

cone sample point using the method as described in section 6.1.1, we may still

collide with higher mipmap levels as the sample radius expands. Another problem

with such wide cones is the potential to skip through thin geometry. Thus we

have implemented an alternative sampling technique for 60° cones, in which the

sampling points fall precisely on each LOD level, and the radius and distance is

precisely doubled with each iteration (this is less than the previous technique at

60°), this can be seen in Figure 6.4.

Another desirable property of this approach is that it removes the dependency

on a mipmapped texture, since we are sampling precisely at each level of the

hierarchy, we could potentially use different textures and formats for each level of

the hierarchy. More on this in the Future Work section. This approach makes it

easier to avoid self-intersection in higher mipmap levels. To avoid self-intersection

at the base level we resort to simply offsetting the starting position, x, some

128

Figure 6.4: Geometric construction of the first three samples using the cone tracing
technique specialized to diffuse cones at 60°, note the overlap in samples help to
prevent skipping through thin geometry.

distance, f , along the normal. We have again provide GLSL code for the specialized

60° diffuse cone tracing routine in Figure B.5 in Appendix B.

6.2 Soft Shadows

Soft shadows are typically a challenging problem in computer graphics. Traditional

techniques to evaluate shadows, e.g. shadow mapping, tend to create unpleasant

aliasing artifacts. Over the years many techniques have attempted to address the

shortcomings of shadow mapping, i.e. Variance Shadow Maps (VSM) [DL06], Per

centage Closer Filtering (PCF) [RSC87], Cascaded Shadow Maps (CSM) [Dim07].

Invariably, these come with additional computational costs, memory requirements

and code complexity. Ray-based approaches provide a straightforward approach

to shadowing, but can potentially require tracing millions of extra rays to achieve

a plausible soft shadow effect. We use soft shadows as an example of how cone

129

tracing is performed, and describe in detail how to perform sampling using cone

tracing.

Cone tracing completely inverts the relationship between computational com

plexity and shadow “softness.” With cone tracing, the softer a shadow is, the easier

it is to compute. This is a side effect of the cone tracing approach. In order to

get “hard” shadows, we specify a cone aperture of zero degrees, which produces

a result analogous to raycasting through a dense volumetric texture. All samples

are taken from the lowest mipmap level, and the step size remains constant at

the size of a single voxel. However, when we increase the cone’s aperture, the

sampling rate is reduced by a linear function of the cone ratio. As each sample

is taken at a further distance from the previous, we start sampling from higher

mipmap levels. Our shadow function thus takes on a form similar to that of the

emission-absorption model from volume rendering, with the addition of hierarchical

sampling, see equation 6.3.

nn
S (x, dω) = 1 − (1 − Vlod,α [pi]) (6.3)

i=0

We compute voxel-traced soft shadows in a deferred context, for every pixel

on the screen we trace a cone towards the light source. If it arrives at the light,

our view is unoccluded, otherwise we accumulate the degree of occlusion along the

shadow ray. We can see the performance characteristics of tracing shadow cones

of varying cone apertures in Figure 6.5. Examples of soft shadow tracing can be

seen in Figure 6.6.

130

Figure 6.5: Shadow cone tracing performance of several scenes, varying the cone
aperture by increments of 5°. For the Sponza and Ruins scenes, the light source
is above the scene, while for the Sibenik and Conference Room scenes, the light
source is inside the scene.

131

Figure 6.6: Voxel cone traced soft shadows of the column in the Sibenik Cathe
dral scene. Cone apertures vary from 0°, 2°, 4°, and 6°. Note that even the 0°
cone aperture results in a slight soft shadowing effect due to the hardware based
interpolation. This behavior could be modified by changing the hardware texture
filtering parameters, but it is hard to imagine a scenario in which doing so would
be desirable. Note, this scene exhibits no global illumination effects.

132

6.3 Ambient Occlusion

Ambient occlusion is often referred to as a simpler form of global illumination, when

in reality it is a non-physically based heuristic used to determine an occlusion value

based on the presence of local geometry. Commonly performed in screen space

using the depth buffer, it provides a subtle (or sometimes not so subtle) shadowing

effect at sharp concave creases in the scene geometry (i.e. interior room edges and

corners). Lack of full geometry information in the depth buffer leads to artifacts

at regions with depth discontinuities. Since we already have a fully volumetric

filtered scene representation, we can implement a version that does not suffer from

these artifacts. Much like we will see with diffuse interreflection (Section 6.4),

ambient occlusion can be computed by tracing cones over the hemisphere Ω+, and

is computed as follows:

ˆ1
O (x) = V (x, dω) (dn · ωd) ddω (6.4)

π Ω+

Applying the concept of voxel cone tracing to equation 6.4, we partition the

integral into N conic regions:

N0−1 ˆ1
O (x) = V (x, dωk) (dn · ωd k) ddωk (6.5)

π Ω+
kk=0

where Ω+
i is the portion of the upper hemisphere represented by cone i. We can

move the visibility function, V , outside of the cone integral on the assumption that

133

visibility is the same within a cone:

N0−1 ˆ1
O (x) = V (x, dωk) (dn · ωd k) ddω (6.6)

π Ω+
kk=0 ´

We can create a weight function, Wi = (dn · ωd) ddω, and write the final Ω+
i

ambient occlusion formulation as:

N0−11
O (x) = V (x, dωk) Wk (6.7)

π k=0

We are now left only with the task of determining the number and orientation of

the cones and their associated weights. For instance, we can have 6 cones traced

with 60 degrees over the hemisphere oriented as follows (courtesy of [Yeu13]):

dω0 = (0.000000, 1.000000, 0.000000)

d = (0.000000, 0.500000, 0.866025)
ω1

d = (0.823639, 0.500000, 0.267617)
ω2

d = (0.509037, 0.500000, −0.700629) (6.8)
ω3

d = (−0.509037, 0.500000, −0.700629)
ω4

dω5 = (−0.823639, 0.500000, 0.267617)

We can solve for the weights Wk analytically by integrating the Lambertian reflec

tive surface for each region on the hemisphere:

134

ˆ 2π ˆ
0

π
6

cos θ sin θdθdφ =
π

W0 = 4
0
π
5

π
2 3π

20

ˆ ˆ
cos θ sin θdθdφ =
W1 =

π
5

π
6−

3π
5

π
2 3π

20

ˆ ˆ
cos θ sin θdθdφ =
W2 =

π
5

π
6
π
2 3π

20

ˆ

ˆ
π
5

7π
5

π
5

3

πˆ
π
5

9

7

ˆ
cos θ sin θdθdφ =
W3 =

W4 =

π
6

π
2

π
6

3π

20

ˆ
cos θ sin θdθdφ =

π
π
2 3π

20

ˆ
cos θ sin θdθdφ =
 (6.9)
W5 =

π
6

Which sums to π which is the expected result for a Lambertian surface:

0
W0...5 = π (6.10)

Note, this should not sum to 2π, which is somewhat counter-intuitive, since 2π is

the steradians for a hemisphere. The cos θ term is responsible for this reduction.

This is because each point on a Lambertian surface has a reflective intensity defined

by the cosine function, however, the measured reflected radiance is still independent

of the viewing direction.

Since it uses the same cones, ambient occlusion can be computed alongside

diffuse interreflection with negligible extra cost. Generally, ambient occlusion cones

will be traced at a much shorter distance, so we must be sure to stop updating the

135

Figure 6.7: A set of cones emanating from the surface point x, and oriented around
the normal dn is used to compute ambient occlusion by calculating an “accessibility
value” indicating the presence of nearby geometry.

occlusion value even as we continue to update the diffuse cones. Examples of the

ambient occlusion calculation using cone tracing can be seen in Figure 6.8.

However, by performing ambient occlusion cone tracing in isolation, we can ob

serve the performance characteristics of the ambient occlusion cone tracing method

in Figure 6.9. Note that the ambient occlusion calculation remains the same for

all the different voxel methods, thus it is not informative to differentiate between

them.

6.4 Diffuse Interreflection

Diffuse interreflection works in much the same manner as ambient occlusion, except

that instead of gathering occlusion values, we gather the reflected radiance from

surrounding geometry, see Figure 6.10.

ˆ
L (x → ωd o) = fs (x, dωi, dωo) (dn · ωd i) L (x ← ωd i) ddωi (6.11)

Ω+

136

Figure 6.8: Examples of ambient occlusion computed for several classic computer
graphics scenes.

137

Figure 6.9: Ambient occlusion cone tracing performance for several classic com
puter graphics scenes at 2563 and 5123 voxel resolutions. Note, that the post
voxelization cost of tracing different scenes is largely invariant with respect to
scene geometry.

138

We can remove the BSDF function, fs, as we are assuming diffuse reflectance (i.e.

the same everywhere over the hemisphere):

ˆ
ρ

L (x → dωo) = (dn · dωi) L (x ← ωd i) ddωi (6.12)
π Ω+

where ρ ∈ [0, 1] is the diffuse reflection coefficient or albedo. Now it falls once again

k

to partitioning the integral into N conic regions:

N0−1 ˆ
L (x → dωo) =

ρ
π Ω+

k=0

(dn · dωk) L (x ← ωd k) ddωk (6.13)

k

We can pull the incoming term out of the integral under the assumption that the

incoming radiance is constant within a cone:

N0−1 ˆ
L (x → dωo) =

ρ
L (x ← dωk) ωk

π Ω+
k=0

(dn · dωk) dd

k

N0−1

=
ρ

L (x ← dωk) Wk (6.14)
π k=0

where Wk = (dn · ωd k) ddωk is the same weight function as in Equation 6.10 which Ω+
´

we can solve for or assign so long as the weights sum to 2π (the steradians over a

hemisphere). The directions dωk (as show in equation 6.8) indicate the precomputed

directions of the cones.

139

Figure 6.10: Much like ambient occlusion (cf. Figure 6.7), a set of cones emanat
ing from the surface point x, and oriented around the normal dn can be used to
compute diffuse interreflection as well by accumulating the reflected illumination
off of nearby geometry from the voxel based proxy.

We compare both the generic cone tracing technique described in section 6.1

and the specialized technique described in 6.1.2 and display the results in Figure

6.11.

Performance of the two techniques is far more differentiated than expected.

The specialized cone tracing technique tends to outperform the generic cone trac

ing method, as seen in Figure 6.12, which is surprising, considering that it is

actually sampling more frequently. It is possible that this is evidence that the

final interpolation (between mipmap levels) of the quadrilinear interpolation is not

actually performed in hardware, but instead emulated in software, or, the higher

sampling rate is simply causing the specialized cone tracing to saturate and ter

minate earlier.

6.5 Specular Reflection

Specular reflections are achieved by tracing a single cone along a ray that is mir

rored about the surface normal, see Figure 6.13. In general, the specular cone has

140

Figure 6.11: Comparison of diffuse interreflection techniques, the generic cone trac
ing technique at 60° is on the left, while the specialized technique for diffuse cones
of 60° is on the right. We observe that the specialized cones seem to do slightly
better at avoiding self-illumination, yet exhibit somewhat brighter highlights.

141

Figure 6.12: Timing data of the diffuse interreflection methods for the Sponza
scene at a voxel resolution of 2563 comparing diffuse cone tracing performance for
the three implemented voxel methods and the generic vs. specialized cone tracing
methods. The specialized cone tracing method provides a performance increase
across all implementation, and in the case of the spherical harmonic method a
speedup of over 50%. Note, the compact spherical harmonic storage (RGBA8) is
quite competitive with isotropic and anisotropic trace times.

142

Figure 6.13: A specular cone is reflected around the normal. The cone aperture
can be determined by the glossiness of the material.

a much tighter aperture than the diffuse cones, which leads to a greater sampling

rate and higher traversal costs.

In the case of cones with zero degree apertures, cone tracing degenerates into

ray casting within the base levels of volume textures and the specular surface

reverts into a mirror, albeit one that mirrors the voxel based proxy geometry

rather than the actual geometry of the scene. As the cone aperture is increased

in size, the sampling rate decreases, performance increases and the result is an

extremely plausible specular effect, see Figure 6.14 for examples.

The performance of this method increases dramatically as the cone aperture

increases see Figure 6.15; while it may not be suitable for perfect mirror reflections,

its performance for glossy type reflections is extremely competitive, and more than

suitable for real-time applications.

Specifying the cone aperture is a good way to determine performance metrics,

but in general, the specular reflection is based on the glossiness of the material,

g, and the cone aperture calculation would be based upon this and the selected

illumination model.

143

Figure 6.14: Images of specular tracing in the Crytek Sponza scene. From left
to right and top to bottom cone apertures are 0, 5, 10, 15, 20, and 25 degrees
respectively. Dark surfaces are not specularly reflective.

144

Figure 6.15: Comparison of tracing times for specular cones for the three imple
mented voxel formats. Tracing time for the specular cones decreases rapidly as the
cone aperture increases.

145

Chapter 7: Voxel Based Pipeline

Voxelization
+DirectCIllumination)

Voxel
Mipmapping

FinalCRenderingShadowCMap
Generation

HierarchyCConstructionGeometryCNCMaterials

Diffuse
VoxelCPosition

BumpCNormals

SurfaceCNormals

Specular
Depth

RenderCToC
Textures

ShadowCMap

VoxelCCone
Tracing

DirectCIllumination

IndirectCIllumination
+

Figure 7.1: Illustration of the full voxel based lighting pipeline. We construct
a filtered mipmap hierarchy of direct illumination values, which is then used to
calculate the per-pixel indirect illumination component to accumulate with the
direct illumination computed in a deferred context.

In Chapter 6 we have described and shown how to achieve many effects required

for a global illumination solution, but not how to assemble them into a complete

solution. Additionally in Chapter 5 we have discussed a variety of voxel storage

approaches. Ultimately, to compute the final global illumination solution, we must

incorporate both the direct and indirect illumination.

146

7.1 Direct Illumination

In order to compute the indirect illumination we must compute the direct illumi

nation component for the voxels first. Effectively, we perform the direct lighting

computation in two places in our pipeline (cf. Figure 7.1). We must initialize the

voxel hierarchy with direct illumination values in order for it to be a viable source

of gathered indirect illumination values for the final rendering pass. The initialized

voxel color must also take into account the presence of shadowing information. As

the voxel hierarchy is not yet constructed, we cannot employ voxel based shadows

(as described in Section 6.2). Thus, we resort to using traditional shadow mapping

techniques. We render shadow maps from the light sources, and pass these along

to the voxelization stage along with all lighting information. This has the benefit

of allowing us to avoid the light injection stage present in [CNS∗11, KD10, Yeu13],

but comes at the cost of requiring re-voxelization in the event of lighting changes.

There are, however, several ways in which the re-voxelization costs can be miti

gated and/or eliminated. For now, let us focus on the benefits of sampling from

the shadow maps, rather than attempting to “inject” light into the volume. By

sampling from the shadow map we avoid the problem illustrated in Figure 7.2a

where a low resolution shadow map is unable to provide full coverage for the scene

voxels, an effect that is displayed in Figure 7.2b. By sampling the shadow map

from the voxels, as in Figure 7.2c, we avoid gaps in our shadow coverage.

The re-voxelization cost can be mitigated somewhat by only re-voxelizing scene

geometry at a different frequency than the render frame rate (i.e. re-voxelize only

147

Shadow M
ap Texe

ls

(a) (b)

Shadow M
ap Texe

ls

(c) (d)

Figure 7.2: (a) Demonstrates the improper coverage of a shadow map with insuf
ficient resolution, the result can be seen in (b) credit: [Yeu13]. By sampling the
shadow map from the voxel, as in (c),we avoid shadow coverage gaps, as evidenced
in (d) (which also has direct lighting information).

148

every 5th frame). Re-voxelization required by changing lighting conditions can be

avoided entirely if during voxelization a sparse active-voxel-list was constructed.

In this case, the active voxels can be processed and updated directly.

The computation for the color of the voxel, Cvoxel, is straightforward. Essen

tially, its color is derived from the standard direct illumination lighting equation,

omitting the specular and ambient terms, as they are, quite literally, hacks to ap

proximate indirect illumination. So, Cvoxel, is really just the lit and shadowed

diffuse coloring:

Cvoxel = ClightCdiffuse dn ·dl S (7.1)

where Cdiffuse is the color sampled from either the object’s diffuse texture, or it’s

diffuse material, Clight is the light color, dn is the surface normal, or the bump map

dnormal in the presence of a bump map, anddl is the normalized light vector, dn · l

can also be referred to as Idiffuse, the intensity of the diffuse lighting contribution,

and S is the shadowing contribution sampled from a traditional shadow map.

Direct illumination for the pixel, Cpixel, is calculated in the exact same manner

as for the voxel, except that in this case we have the option to use traditional

shadow mapping as with Cvoxel, or, use the voxel cone tracing based shadow

function described in Eq. 6.3, from Section 6.2. Since we are demonstrating the

viability of voxel based rendering approaches, we used the voxel based shadowing

approach for Cpixel.

149

7.2 Indirect Illumination

Indirect illumination is computed using the technique described in Chapter 6. Since

we are rendering in a deferred context, for every pixel in the scene we have access

to its diffuse color, voxel position, bump map normal, surface normal, and depth.

We use the voxel position and normal information to initiate the indirect diffuse

color computation, CindirectDiffuse, as per the methodology described in 6.4 as

a side effect of tracing diffuse cones. We also compute (using an additional guard

on sample distance) the ambient occlusion, O, in the scene at no additional com

putational cost. To compute the indirect specular component, CindirectSpecular,

we use the method described in Section 6.5.

7.3 Final Rendering & Results

We perform our final rendering in a deferred context, accomplished by rendering

a single screen covering triangle, and sampling from deferred textures holding dif

fuse, normal, specular, voxel position, and depth information. We have described

how to find the direct and indirect lighting contributions, and now have all the

components needed to compute our final global illumination solution. But before

we proceed, we discuss how best to incorporate the ambient occlusion contribution,

O, since it is not a physically based quantity, we can elect to omit it, but ambient

occlusion can be useful to hide artifacts such as light leakage. Let us define the

ambient occlusion contribution, cO, which can be varied from 0 to 1. Since, ambi

ent occlusion is a shadow term, we modulate the shadow term, S, by the ambient

150

occlusion contribution, O, with a weight determined by cO. That is:

S = O (1 − cO) + S · O · cO (7.2)

allowing the user to control the ambient occlusion contribution as desired. Finally,

now that we have defined all the terms of our final lighting formula, we can express

the final color value, Cfinal, as:

Cfinal = Clight dn ·dl S + CindirectDiffuse Cdiffuse+CindirectSpecularCspecular
(7.3)

where Cspecular is the specular sample stored in the deferred specular texture.

Final renderings can be seen in Figure 7.3, note the presence of soft shadow

ing, diffuse interreflection, and glossy surfaces. Additionally, images depicting the

incremental addition of voxel cone tracing based illumination effects can be seen

in Figure A.3 and Figure A.4 in Appendix A.

Unless otherwise mentioned (as in Chapter 4), all results were generated on an

Intel Core i7 950 @ 3.07 GHz with an NVIDIA GeForce Titan GPU. The selection

of the Titan GPU was made because its 6 gigabytes of on-board RAM allowed us

to implement our approach using dense 3D textures while waiting for inevitable

release sparse texture support. Otherwise it would have been necessary to expend

significant time and effort towards the creation of complex data-structures which

have nothing to do with our research. Additionally, until the late addition of

bindless textures (a feature only available on Kepler class hardware) our approach

151

Figure 7.3: Full global illumination final renderings for the Sponza Atrium and
the Ruins. The images are rendering using isotropic, anisotropic, and spherical
harmonic voxels from the top row to the bottom, respectively.

152

worked just fine on a much older GTX 480 (Fermi class hardware) with 1.5GB of

on-board ram, albeit at a lower voxel resolution. We have largely displayed timings

and results for each component of the rendering (or pipeline component) as we

have introduced them. All scenes have been rendered at a resolution of 1280 × 720

(720p). We now display the final render timings for Sponza Atrium and Ruins

scenes in 7.4 as a sum of their component parts. These scenes were selected as

they provided the best approximation of the geometric and material complexity

likely to be found in modern games. In many ways the timings illustrated in

Figure 7.4 are a representation of the worst case performance results. We have not

enabled sparse-voxelization, nor have we fully specialized the voxelization pipeline

to each target storage format using the methods in Chapter 4. The entire rendering

engine is solely the product of a single graduate student, working without the

benefit of guidance from an industry rendering expert. Furthermore, as will be

discussed, there are many further optimizations that could be implemented that

do not directly relate to the subject matter of this dissertation.

Nevertheless, the results are sufficient for comparing the strengths and weakness

of the implemented storage formats. As expected, the simplest format, isotropic, is

the fastest, while the complexity of the anisotropic and spherical harmonic formats

predictably increase rendering times. This trend holds true when looking at vox

elization performance in isolation. While there is a performance cost going from

the isotropic to anisotropic formats, there is perhaps not so great a cost as expected

when moving from the anisotropic to spherical harmonic formats. Surprisingly, the

spherical harmonic mipmapping is over twice as fast as the anisotropic mipmap

153

Figure 7.4: Complete profiles of the final rendering times for the Sponza Atrium
scene and the Ruins scene, for the isotropic, anisotropic, and spherical harmonic
storage formats.

ping. Unfortunately, the sampling cost is by far the highest for the spherical

harmonic approach, as it is clearly superior in capturing directionality informa

tion, as best seen in Figure A.2 in Appendix A. In the end, these timings serve less

as an indicator of their suitability as real-time rendering approaches, but rather

an indicator of their time until more widespread adoption.

154

Chapter 8: Conclusions and Future Work

In this dissertation, we have presented three voxel storage models for use in voxel

cone tracing. These storage models allow for the comparison between direction-

ally independent isotropic voxels vs. directionally dependent anisotropic voxels

implemented as a discrete set of per face color values (cf. Section 5.1.2), and di

rectionally dependent anisotropic voxels implemented as spherical harmonics (cf.

Section 5.1.3), a novel contribution, unique to this work.

In support of this work, we have contributed an innovative voxelization ap

proach, detailed in Chapter 4, that is currently the fastest known method for

generating a regular discretized geometry representation from an input triangular

surface geometry on consumer grade graphics hardware.

To facilitate voxel cone tracing, we have detailed efficient real-time filtered hier

archy creation within the mipmap levels of the supported texture formats, enabling

hardware accelerated quadrilinear filtering of our voxelized volumetric scene proxy

(cf. Section 5.3). Once again, the method for the mipmapping of spherical har

monics (cf. Section 5.3.3) represents a new contribution found only in this work.

Additionally, we have contributed a method for performing sparse computations in

a dense voxel storage medium by employing active-voxel-lists, vastly accelerating

mipmapping time at a small cost to voxelization time (cf. Section 5.4).

We have described in unprecedented detail the geometric construction of cone

155

tracing based sampling methods (cf. Section 6.1), and described methods for

avoiding self-intersection when tracing within a voxelized environment (cf. Section

6.1.1). We have further expanded upon the concept of voxel cone tracing by

noting the potential for optimizing and specializing cone based sampling methods

based upon cone aperture. In Section 6.1.2, we described a cone tracing method

optimized for tracing cones with an aperture of 60°, an angle ideally suited for

tracing diffuse interreflection. Furthermore, this alternate cone tracing method

has the side effect of sampling precisely at each mipmap level, obviating the need

for the previously desirable quadrilinear hardware filtering, and enabling instead

the possibility of using different voxel storage methods (and texture formats) for

different levels of the voxel hierarchy, i.e. higher order spherical harmonics at

higher levels of the hierarchy.

In Chapter 6 we described the computation of many global illumination effects

using voxel cone tracing, which many previously considered too expensive for real-

time rendering. These include Soft Shadows (Section 6.2), Ambient Occlusion

(Section 6.3), Diffuse Interreflection (Section 6.4), and glossy Specular Reflections

(Section 6.5). Our care in constructing a generic voxel based cone tracing pipeline

allowed every one of these effects to be executed for any voxel storage method on

the condition that appropriate methods were provided for the following: directional

voxel sampling, voxel storage, and voxel mipmapping.

There are many techniques that can enhance final rendering performance that

are orthogonal to the approaches discussed in this thesis. For instance, performing

cone tracing at half resolution and up-sampling the indirect lighting results back

156

to full resolution, or exploiting temporal coherence to avoid a full indirect lighting

computation for each frame as in [SHR∗09]. In the same vein, assuming a naive

scheme of re-voxelizing all scene geometry, we can lower the update frequency of the

voxelization and mipmapping without introducing too many artifacts. This will

generally be dependent on the speed of moving geometry in the scene. Considering

that voxelization is often the most expensive part of the pipeline (especially for

simpler voxel storage formats), we can further amortize the cost of voxelization by

trivially implementing a system that flags and re-voxelizes only the scene geometry

that has actually been changed, providing a dramatic cost savings in practical real-

world scenarios.

Furthermore, considering the presence of dedicated rasterization hardware on

modern GPUs and the many similarities between voxelization and rasterization,

it would seem (at least to this author) that the extension of the rasterization

hardware to more natively support voxelization would be a fruitful avenue of ex

ploration yielding yet faster and more easily implemented dynamic voxelizations.

Outside the realm of theoretical hardware improvements, the recent introduction of

broad API support for sparse textures should lead to dramatically reduced memory

requirements and/or higher voxel resolutions.

Shadow cone tracing is interesting, but falls in the awkward position of requiring

that it execute after the stage in which it would be most useful; that is, it must

occur after hierarchy construction in which shadowing information is useful for

constructing the initial radiance distribution. That being said, it does still have

potential application as a means of computing soft penumbra regions when coupled

157

with traditional shadow mapping.

Another interested avenue of exploration would be to further experiment with

combinations of the light propagation volumes and voxel cone tracing techniques.

For instance, we could select a level of the spherical harmonic mipmap hierarchy

and perform light propagation based radiance diffusion, and sample from this for

the indirect diffuse component of our lighting equation, and combine this with

specular cone tracing for the indirect specular component of our lighting equation.

Future work in improving voxelization performance could exploit true dynamic

parallelism facilities currently only available in CUDA 5 to spawn exactly one

thread for each triangle/voxel pair. While this would still obviate the need for

complex tiling and sorting strategies, it would unfortunately remove the ability

to exploit the remaining fixed-function hardware present on the GPU exposed to

the graphics pipeline. Additionally, we could explore more robust cutoff prediction

strategies, techniques for automatic minimum detection, and more sophisticated

classification approaches.

The voxel cone tracing approach is, at the same time, deceptively simple, and

extremely robust. It excels at reproducing effects that would otherwise be ex

tremely computationally expensive. Ultimately, its adoption in major game engines

seems inevitable [Mit12], and the evolution of voxel cone tracing will invariably be

tied to accuracy of the directional radiance sampling in the upper levels of its

voxel hierarchy. In order to fully exploit the available filtering hardware of modern

GPUs, this directionally dependent radiance storage must be based on orthogo

nal functions, thus naturally leading to spherical harmonics. In this dissertation

158

we have not only endeavored to, but succeeded in demonstrating that spherical

harmonics represent a viable voxel storage format for voxel cone tracing.

159

Bibliography

[AKDS04]	 Annen T., Kautz J., Durand F., Seidel H.-P.: Spherical har
monic gradients for mid-range illumination. Proceedings of Eurograph
ics Symposium on Rendering (Jan 2004).

[AM05]	 Akenine-Möller T.: Fast 3d triangle-box overlap testing. In ACM
SIGGRAPH 2005 Courses (New York, NY, USA, 2005), SIGGRAPH
’05, ACM.

[ATS94]	 Arvo J., Torrance K., Smits B.: A framework for the analysis
of error in global illumination algorithms. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 1994), SIGGRAPH ’94, ACM, pp. 75–84.

[AUW07]	 Akerlund O., Unger M., Wang R.: Precomputed Visibility Cuts
for Interactive Relighting with Dynamic BRDFs. Proceedings Pacific
Graphics (Jan 2007).

[AWB08]	 Arbree A., Walter B., Bala K.: Single-pass scalable subsurface
rendering with lightcuts. Eurographics (Jan 2008).

[BB11]	 Bolz J., Brown P.: ARB_shader_image_load_store, June 2011.

[BD08]	 Bodt T. D., Dutre P.: Coherent Lightcuts. Tech. rep., Katholieke
Universiteit Leuven, August 2008.

[BF89]	 Buchalew C., Fussell D.: Illumination networks: fast realistic
rendering with general reflectance functions. ACM SIGGRAPH Com
puter Graphics (Jan 1989).

[BT99]	 Bala K., Teller S.: Radiance interpolants for accelerated bounded-
error ray tracing. ACM Transactions on Graphics (TOG) (Jan 1999).

[Bun05]	 Bunnell M.: Dynamic ambient occlusion and indirect lighting. GPU
Gems (Jan 2005).

160

[BWG03] Bala K., Walter B., Greenberg D. P.: Combining edges and
points for interactive high-quality rendering. In ACM SIGGRAPH
2003 Papers (New York, NY, USA, 2003), SIGGRAPH ’03, ACM,
pp. 631–640.

[CB04] Christensen P., Batali D.: An irradiance atlas for global illu
mination in complex production scenes. Eurographics Symposium on
Rendering 2004 (Dec 2004), 10.

[CG85] Cohen M., Greenberg D.: The hemi-cube: a radiosity solution for
complex environments. ACM SIGGRAPH Computer Graphics (Jan
1985).

[CG12] Crassin C., Green S.: Octree-Based Sparse Voxelization Using The
GPU Hardware Rasterizer. CRC Press, Patrick Cozzi and Christophe
Riccio, 2012.

[CHH02] Carr N. A., Hall J. D., Hart J. C.: The ray engine. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware (Aire-la-Ville, Switzerland, Switzerland, 2002),
HWWS ’02, Eurographics Association, pp. 37–46.

[CHH03] Carr N. A., Hall J. D., Hart J. C.: GPU algorithms for ra
diosity and subsurface scattering. In Proceedings of the ACM SIG
GRAPH/EUROGRAPHICS conference on Graphics hardware (Aire
la-Ville, Switzerland, Switzerland, 2003), HWWS ’03, Eurographics
Association, pp. 51–59.

[CHL04] Coombe G., Harris M., Lastra A.: Radiosity on graphics hard
ware. GI ’04: Proceedings of Graphics Interface 2004 (May 2004).

[CLS97] Christensen P., Lischinski D., Stollnitz E.: Clustering for
glossy global illumination. ACM Transactions on Graphics (TOG)
(Jan 1997).

[CMS87] Cabral B., Max N., Springmeyer R.: Bidirectional reflection
functions from surface bump maps. ACM SIGGRAPH Computer
Graphics (Jan 1987).

[CNS∗11] Crassin C., Neyret F., Sainz M., Green S., Eisemann E.:
Interactive indirect illumination using voxel cone tracing. Computer

161

Graphics Forum (Proceedings of Pacific Graphics 2011) 30, 7 (sep
2011).

[Cra11]	 Crassin C.: GigaVoxels: A Voxel-Based Rendering Pipeline For Ef
ficient Exploration Of Large And Detailed Scenes. PhD thesis, UNI
VERSITE DE GRENOBLE, July 2011. English and web-optimized
version.

[DCB∗04]	 Dong Z., Chen W., Bao H., Zhang H., Peng Q.: Real-time
voxelization for complex polygonal models. In 12th Pacific Conference
on Computer Graphics and Applications, 2004. PG 2004. Proceedings
(2004), pp. 43–50.

[Dim07]	 Dimitrov R.: Cascaded shadow maps. Tech. rep., NVIDIA Corpo
ration, August 2007.

[DKTS07]	 Dong Z., Kautz J., Theobalt C., Seidel H.-P.: Interactive
global illumination using implicit visibility. In Proceedings of the 15th
Pacific Conference on Computer Graphics and Applications (Washing
ton, DC, USA, 2007), PG ’07, IEEE Computer Society, pp. 77–86.

[DL06]	 Donnelly W., Lauritzen A.: Variance shadow maps. In Pro
ceedings of the 2006 symposium on Interactive 3D graphics and games
(New York, NY, USA, 2006), I3D ’06, ACM, pp. 161–165.

[DS97]	 Drettakis G., Sillion F. X.: Interactive update of global illu
mination using a line-space hierarchy. In Proceedings of the 24th an
nual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1997), SIGGRAPH ’97, ACM Press/Addison-Wesley
Publishing Co., pp. 57–64.

[DS05]	 Dachsbacher C., Stamminger M.: Reflective shadow maps. In
Proceedings of the 2005 symposium on Interactive 3D graphics and
games (New York, NY, USA, 2005), I3D ’05, ACM, pp. 203–231.

[DS06]	 Dachsbacher C., Stamminger M.: Splatting indirect illumina
tion. Proceedings of the 2006 symposium on Interactive 3D graphics
(Jan 2006).

162

[DSDD07] Dachsbacher C., Stamminger M., Drettakis G., Durand F.:

Implicit visibility and antiradiance for interactive global illumination.
vol. 26, ACM.

[DZTS07] Dyken C., Ziegler G., Theobalt C., Seidel H.-P.: HistoPyra
mids in Iso-Surface Extraction. Tech. rep., Max-Planck-Institut fÃŒr
Informatik, 2007.

[ED06] Eisemann E., Décoret X.: Fast Scene Voxelization and Applica
tions. ACM SIGGRAPH (2006), 71–78.

[ED08] Eisemann E., Décoret X.: Single-pass GPU solid voxelization
for real-time applications. In Proceedings of graphics interface 2008
(2008), Canadian Information Processing Society, pp. 73–80.

[FC00] Fang S., Chen H.: Hardware accelerated voxelization. Computers
and Graphics 24 (2000).

[FCL05] Fan S., Chenney S., Lai Y.: Metropolis photon sampling with
optional user guidance. Eurographics Symposium on Rendering (Jan
2005).

[Fol13] Foley T.: A digression on divergence.
http://tangentvector.wordpress.com/2013/04/12/a-digression-on
divergence/, April 2013.

[Gai12] Gaitatzes A.: Interactive Diffuse Global Illumination Discretization
Methods for Dynamic Environments. PhD thesis, University of Cyprus,
2012.

[GBP08] Gautron P., Bouatouch K., Pattanaik S.: Temporal radiance
caching. In ACM SIGGRAPH 2008 classes (New York, NY, USA,
2008), SIGGRAPH ’08, ACM, pp. 79:1–79:29.

[GKBP05]	 Gautron P., Krivanek J., Bouatouch K., Pattanaik S.: Ra
diance cache splatting: a gpu-friendly global illumination algorithm
(sketch). International Conference on Computer Graphics and . . . (Jan
2005).

[GKPB04]	 Gautron P., Krivanek J., Pattanaik S., Bouatouch K.: A
novel hemispherical basis for accurate and efficient rendering. Proc.
Eurographics Symp. Rendering (Jan 2004).

163

[Gre03]	 Green R.: Spherical harmonic lighting: The gritty details. Archives
of the Game Developers Conference (2003).

[GTGB84]	 Goral C., Torrance K., Greenberg D., Battaile B.: Model
ing the interaction of light between diffuse surfaces. ACM SIGGRAPH
Computer Graphics (Jan 1984).

[Guo98]	 Guo B.: Progressive radiance evaluation using directional coher
ence maps. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1998), SIG
GRAPH ’98, ACM, pp. 255–266.

[HAMO05]	 Hasselgren J., Akenine-Möller T., Ohlsson L.: Conservative
Rasterization. In GPU Gems 2. 2005, pp. 677–690.

[Hec91]	 Heckbert P.: Simulating global illumination using adaptive meshing.
PhD thesis, UC Berkeley, June 1991.

[HHS05]	 Havran V., Herzog R., Seidel H.: Fast final gathering via reverse
photon mapping. Computer Graphics Forum (Jan 2005).

[HHW09]	 Hertel S., Hormann K., Westermann R.: A hybrid gpu render
ing pipline for alias-free hard shadows. In Proceedings of Eurographics
2009 (2009).

[HPB06]	 Hašan M., Pellacini F., Bala K.: Direct-to-indirect transfer for
cinematic relighting. In ACM SIGGRAPH 2006 Papers (New York,
NY, USA, 2006), SIGGRAPH ’06, ACM, pp. 1089–1097.

[HPB07]	 Hašan M., Pellacini F., Bala K.: Matrix row-column sampling
for the many-light problem. SIGGRAPH ’07: SIGGRAPH 2007 papers
(Aug 2007).

[HSA91]	 Hanrahan P., Salzman D., Aupperle L.: A rapid hierarchi
cal radiosity algorithm. ACM SIGGRAPH Computer Graphics (Jan
1991).

[HSM10]	 Howell J. R., Siegel R., Menguc M. P.: Thermal Radiation
Heat Transfer, 5th Edition, 5 ed. CRC Press, 9 2010.

164

[IDYN07]	 Iwasaki K., Dobashi Y., Yoshimoto F., Nishita T.: Precom
puted radiance transfer for dynamic scenes taking into account light
interreflection. Proceedings of Eurographics Symposium on Rendering
2007 (2007).

[Ins10]	 Insomniac Games: Useful results in spherical harmonics (mainly
2-band). October 2010.

[IZT∗07]	 Ihrke I., Ziegler G., Tevs A., Theobalt C., Magnor M.,
Seidel H.-P.: Eikonal rendering: efficient light transport in refractive
objects. SIGGRAPH ’07: SIGGRAPH 2007 papers (Aug 2007).

[Jar08]	 Jarosz W.: Efficient Monte Carlo Methods for Light Transport in
Scattering Media. PhD thesis, UC San Diego, Sept. 2008.

[JB02]	 Jensen H. W., Buhler J.: A rapid hierarchical rendering tech
nique for translucent materials. In Proceedings of the 29th annual con
ference on Computer graphics and interactive techniques (New York,
NY, USA, 2002), SIGGRAPH ’02, ACM, pp. 576–581.

[JC95]	 Jensen H., Christensen N. J.: Efficiently rendering shadows using
the photon map. Compugraphics’95 (1995).

[Jen01]	 Jensen H. W.: Realistic image synthesis using photon mapping. A.
K. Peters, Ltd., Natick, MA, USA, 2001.

[JMLH01]	 Jensen H. W., Marschner S. R., Levoy M., Hanrahan P.: A
practical model for subsurface light transport. In Proceedings of the
28th annual conference on Computer graphics and interactive tech
niques (New York, NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 511–
518.

[Kaj86]	 Kajiya J. T.: The rendering equation. In Proceedings of the 13th
annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 1986), ACM, pp. 143–150.

[KAMJ05]	 Kristensen A., Akenine-Möller T., Jensen H.: Precomputed
local radiance transfer for real-time lighting design. Proceedings of
ACM SIGGRAPH 2005 (Jan 2005).

165

[KD10]	 Kaplanyan A., Dachsbacher C.: Cascaded light propagation
volumes for real-time indirect illumination. In Proceedings of the 2010
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2010), I3D ’10, ACM, pp. 99–107.

[KDS96]	 Koenderink J. J., Doorn A. J. v., Stavridi M.: Bidirectional
reflection distribution function expressed in terms of surface scattering
modes. In Proceedings of the 4th European Conference on Computer
Vision-Volume II - Volume II (London, UK, UK, 1996), ECCV ’96,
Springer-Verlag, pp. 28–39.

[Kel97]	 Keller A.: Instant radiosity. In Proceedings of the 24th annual con
ference on Computer graphics and interactive techniques (New York,
NY, USA, 1997), SIGGRAPH ’97, ACM Press/Addison-Wesley Pub
lishing Co., pp. 49–56.

[KGBP05]	 Křivánek J., Gautron P., Bouatouch K., Pattanaik S.: Im
proved radiance gradient computation. In Proceedings of the 21st
spring conference on Computer graphics (New York, NY, USA, 2005),
SCCG ’05, ACM, pp. 155–159.

[KGPB08]	 Křivánek J., Gautron P., Pattanaik S., Bouatouch K.: Ra
diance caching for efficient global illumination computation. In ACM
SIGGRAPH 2008 classes (New York, NY, USA, 2008), SIGGRAPH
’08, ACM, pp. 75:1–75:19.

[KGW∗07]	 Křivánek J., Gautron P., Ward G., Arikan O., Jensen
H. W.: Practical global illumination with irradiance caching. In ACM
SIGGRAPH 2007 courses (New York, NY, USA, 2007), SIGGRAPH
’07, ACM.

[KKZ08]	 Ko J., Ko M., Zwicker M.: Practical methods for a prt-based
shader using spherical harmonics. In ShaderX6 - Advanced Rendering
Techniques, Engel W., (Ed.). Charles River Media, 2008.

[KL05]	 Kontkanen J., Laine S.: Ambient occlusion fields. In Proceedings
of the 2005 symposium on Interactive 3D graphics and games (New
York, NY, USA, 2005), I3D ’05, ACM, pp. 41–48.

166

[KLA04]	 Kautz J., Lehtinen J., Aila T.: Hemispherical rasterization for
self-shadowing of dynamic objects. Proceedings of the Eurographics
Symposium on Rendering (Jan 2004).

[KLS∗05]	 Kniss J., Lefohn A., Strzodka R., Sengupta S., Owens J. D.:
Octree textures on graphics hardware. In ACM SIGGRAPH 2005
Sketches (New York, NY, USA, 2005), SIGGRAPH ’05, ACM.

[KSS02]	 Kautz J., Sloan P.-P., Snyder J.: Fast, arbitrary BRDF shading
for low-frequency lighting using spherical harmonics. Proceedings of the
13th Eurographics workshop on Rendering (Jan 2002).

[KTHS06]	 Kontkanen J., Turquin E., Holzschuch N., Sillion F. X.:
Wavelet radiance transport for interactive indirect lighting. In Pro
ceedings of the 17th Eurographics conference on Rendering Techniques
(Aire-la-Ville, Switzerland, Switzerland, 2006), EGSR’06, Eurograph
ics Association, pp. 161–171.

[KW00]	 Keller A., Wald I.: Efficient Importance Sampling Techniques for
the Photon Map. Tech. rep., Jan 2000.

[LC04]	 Larsen B., Christensen N. J.: Simulating photon mapping for
real-time applications. Rendering Techniques (Jan 2004).

[LD08]	 Lagae A., Dutré P.: Compact, fast and robust grids for ray trac
ing. In ACM SIGGRAPH 2008 talks (New York, NY, USA, 2008),
SIGGRAPH ’08, ACM, pp. 20:1–20:1.

[Leh04]	 Lehtinen J.: Foundations of Precomputed Radiance Transfer. Mas
ter’s thesis, Helsinki University of Technology, Jan 2004.

[LF96]	 Lewis R. R., Fournier A.: Light-driven global illumination with
a wavelet representation of light transport. In Proceedings of the eu
rographics workshop on Rendering techniques ’96 (London, UK, UK,
1996), Springer-Verlag, pp. 11–ff.

[LFWK05]	 Li W., Fan Z., Wei X., Kaufman A.: GPU-based flow simulation
with complex boundaries. GPU Gems 2 (2005), 747764.

167

[LP03] Lavignotte F., Paulin M.: Scalable photon splatting for global il
lumination. In Proceedings of the 1st international conference on Com
puter graphics and interactive techniques in Australasia and South East
Asia (New York, NY, USA, 2003), GRAPHITE ’03, ACM, pp. 203–ff.

[LSKL07] Laine S., Saransaari H., Kontkanen J., Lehtinen J.: Incre
mental instant radiosity for real-time indirect illumination. Proceedings
of Eurographics Symposium on Rendering 2007 (Jan 2007).

[LSSS04] Liu X., Sloan P.-P., Shum H.-Y., Snyder J.: All-frequency
precomputed radiance transfer for glossy objects. Eurographics Sym
posium on Rendering (Jan 2004).

[LTG92] Lischinski D., Tampieri F., Greenberg D.: Discontinuity mesh
ing for accurate radiosity. Computer Graphics and Applications (Jan
1992).

[MAH07] Malmer M., Assarsson U., Holzschuch N.: Fast precomputed
ambient occlusion for proximity shadows. Journal of Graphics Tools
(Jan 2007).

[Mak96] Makhotkin O.: Analysis of radiative transfer between surfaces by
hemispherical harmonics. J. Quant. Spectrosc. Radiat. Transfer (Jan
1996).

[McG12] McGuire M.: The Graphics Codex. iTunes, 2012.

[Men12] Menzel R.: Shader model and glsl versions.
http://renderingpipeline.com/2012/03/shader-model-and-glsl
versions/, 3 2012.

[Mit12] Mittring M.: The Technology Behind the “Unreal Engine 4 Ele
mental demo”, 2012.

[MM02] Ma V. C. H., McCool M. D.: Low latency photon mapping us
ing block hashing. In Proceedings of the ACM SIGGRAPH/EURO
GRAPHICS conference on Graphics hardware (Aire-la-Ville, Switzer
land, Switzerland, 2002), HWWS ’02, Eurographics Association,
pp. 89–99.

168

[MMG06]	 Mitchell J., McTaggart G., Green C.: Shading in valve’s
source engine. ACM SIGGRAPH 2006 (2006), 129–142.

[MPT98]	 Martín I., Pueyo X., Tost D.: A two-pass hardware-based
method for hierarchical radiosity. In Computer Graphics Forum (1998),
vol. 17, Wiley Online Library, pp. 159–164.

[MSW04]	 Mei C., Shi J., Wu F.: Rendering with spherical radiance transport
maps. Computer Graphics Forum (Jan 2004).

[Nij03]	 Nijasure M.: Interactive Global Illumination on the Graphics Pro
cessing Unit. Master’s thesis, University of Central Florida, Jan 2003.

[NN77]	 Nicodemus F., NBS.: Geometrical Considerations and Nomencla
ture for Reflectance. NBS Monograph. U.S. Government Printing Of
fice, 1977.

[NPG05]	 Nijasure M., Pattanaik S., Goel V.: Real-Time Global Illumi
nation on GPUs. Journal of Graphics Tools (Jan 2005).

[NRH03]	 Ng R., Ramamoorthi R., Hanrahan P.: All-frequency shadows
using non-linear wavelet lighting approximation. ACM Transactions
on Graphics (TOG) (Jan 2003).

[NRH04]	 Ng R., Ramamoorthi R., Hanrahan P.: Triple product wavelet
integrals for all-frequency relighting. In ACM SIGGRAPH 2004 Papers
(New York, NY, USA, 2004), SIGGRAPH ’04, ACM, pp. 477–487.

[Pan11]	 Pantaleoni J.: VoxelPipe : A Programmable Pipeline for 3D Vox
elization Blending-Based Rasterization. HPG (2011).

[PB96]	 Pattanaik S., Bouatouch K.: Haar wavelet: A solution to global
illumination with general surface properties. Photorealistic Rendering
Techniques (1996).

[PBMH02]	 Purcell T. J., Buck I., Mark W. R., Hanrahan P.: Ray
tracing on programmable graphics hardware. In Proceedings of the 29th
annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 2002), SIGGRAPH ’02, ACM, pp. 703–712.

169

[PDC∗03]	 Purcell T. J., Donner C., Cammarano M., Jensen H. W.,
Hanrahan P.: Photon mapping on programmable graphics hard
ware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con
ference on Graphics hardware (Aire-la-Ville, Switzerland, Switzerland,
2003), HWWS ’03, Eurographics Association, pp. 41–50.

[Pel99]	 Pellegrini M.: Rendering equation revisited: how to avoid explicit
visibility computations. In Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms (Philadelphia, PA, USA, 1999),
SODA ’99, Society for Industrial and Applied Mathematics, pp. 725–
733.

[PLPB07]	 Pan M., Liu X., Peng Q., Bao H.: Precomputed radiance trans
fer field for rendering interreflections in dynamic scenes. Computer
Graphics Forum (Jan 2007).

[PP98]	 Peter I., Pietrek G.: Importance driven construction of photon
maps. In Rendering Techniques ’98, Drettakis G., Max N., (Eds.),
Eurographics. Springer Vienna, 1998, pp. 269–280.

[PSV90]	 Puech C., Sillion F., Vedel C.: Improving interaction with
radiosity-based lighting simulation programs. Proceedings of the 1990
symposium on Interactive 3D graphics (Jan 1990).

[PTVF07]	 Press W. H., Teukolsky S. A., Vetterling W. T., Flannery
B. P.: Numerical Recipes 3rd Edition: The Art of Scientific Comput
ing, 3 ed. Cambridge University Press, New York, NY, USA, 2007.

[Ram02]	 Ramamoorthi R.: A Signal-Processing Framework for Forward and
Inverse Rendering. PhD thesis, Stanford, CA, USA, Jan 2002.

[Rau12]	 Rauwendaal R.: Hybrid Computational Voxelization Using the
Graphics Pipeline. Master’s thesis, Oregon State University, Nov 2012.

[RB13]	 Rauwendaal R., Bailey M.: Hybrid computational voxelization
using the graphics pipeline. Journal of Computer Graphics Techniques
(JCGT) 2, 1 (March 2013), 15–37.

[RDGK12]	 Ritschel T., Dachsbacher C., Grosch T., Kautz J.: The
state of the art in interactive global illumination. Computer Graphics
Forum 31, 1 (Feb 2012), 160–188.

170

[RGKM07]	 Ritschel T., Grosch T., Kautz J., Müller S.: Interactive
illumination with coherent shadow maps. Proceedings of Eurographics
Symposium on Rendering 2007 (2007).

[RGKS08]	 Ritschel T., Grosch T., Kautz J., Seidel H.-P.: Interactive
global illumination based on coherent surface shadow maps. Proceed
ings of graphics interface 2008 (Jan 2008).

[RH01]	 Ramamoorthi R., Hanrahan P.: An efficient representation for
irradiance environment maps. In Proceedings of the 28th annual con
ference on Computer graphics and interactive techniques (New York,
NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 497–500.

[RH02]	 Ramamoorthi R., Hanrahan P.: Frequency space environment
map rendering. In Proceedings of the 29th annual conference on Com
puter graphics and interactive techniques (New York, NY, USA, 2002),
SIGGRAPH ’02, ACM, pp. 517–526.

[RSC87]	 Reeves W. T., Salesin D. H., Cook R. L.: Rendering antialiased
shadows with depth maps. In ACM SIGGRAPH Computer Graphics
(1987), vol. 21, ACM, pp. 283–291.

[RWS∗06]	 Ren Z., Wang R., Snyder J., Zhou K., Liu X., Sun B.: Real-
time soft shadows in dynamic scenes using spherical harmonic expo
nentiation. Proceedings of ACM SIGGRAPH 2006 (Jan 2006).

[SA13]	 Segal M., Akeley K.: Opengl 4.3 core profile specification, 2013.

[SAG94]	 Smits B., Arvo J., Greenberg D.: A clustering algorithm for ra
diosity in complex environments. In Proceedings of the 21st annual con
ference on Computer graphics and interactive techniques (New York,
NY, USA, 1994), SIGGRAPH ’94, ACM, pp. 435–442.

[SAS92]	 Smits B. E., Arvo J. R., Salesin D. H.: An importance-driven
radiosity algorithm. In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques (New York, NY, USA,
1992), SIGGRAPH ’92, ACM, pp. 273–282.

[SAWG91]	 Sillion F. X., Arvo J. R., Westin S. H., Greenberg D. P.:
A global illumination solution for general reflectance distributions. In
Proceedings of the 18th annual conference on Computer graphics and

171

interactive techniques (New York, NY, USA, 1991), SIGGRAPH ’91,
ACM, pp. 187–196.

[SB97]	 Stürzlinger W., Bastos R.: Interactive rendering of globally illu
minated glossy scenes. Eurographics Rendering Workshop 1997 (Jan
1997).

[Sch12]	 Schwarz M.: Practical binary surface and solid voxelization with
Direct3D 11. In GPU Pro 3: Advanced Rendering Techniques, En-
gel W., (Ed.). A K Peters/CRC Press, Boca Raton, FL, USA, 2012,
pp. 337–352.

[SDS95]	 Sillion F., Drettakis G., Soler C.: A clustering algorithm for
radiance calculation in general environments. In Rendering Techniques
’95, Hanrahan P., Purgathofer W., (Eds.), Eurographics. Springer Vi
enna, 1995, pp. 196–205.

[SEA08]	 Sintorn E., Eisemann E., Assarsson U.: Sample based visibility
for soft shadows using alias-free shadow maps. Computer Graphics Fo
rum (Proceedings of the Eurographics Symposium on Rendering 2008)
27, 4 (2008), 1285–1292.

[SGCH94]	 Schroder C., Gortler S., Cohen M., Hanrahan P.: Wavelet
methods for radiance calculations. Proceedings of Fifth Eurographics
Workshop on Rendering (Jan 1994).

[Sha97]	 Shaw E.: Hierarchical radiosity for dynamic environments. Computer
Graphics Forum 16, 2 (1997), 107–118.

[SHHS03]	 Sloan P.-P., Hall J., Hart J., Snyder J.: Clustered principal
components for precomputed radiance transfer. In ACM SIGGRAPH
2003 Papers (New York, NY, USA, 2003), SIGGRAPH ’03, ACM,
pp. 382–391.

[SHR∗09]	 Soler C., Hoel O., Rochet F., Jay F., Holzschuch N.: Hier
archical Screen Space Indirect Illumination For Video Games. Rapport
de recherche RR-7162, INRIA, Dec. 2009.

[SHS98]	 Slusallek P., Heidrich W., Seidel H.-P.: Radiance maps: an
image-based approach to global illumination. In ACM SIGGRAPH 98

172

Conference abstracts and applications (New York, NY, USA, 1998),
SIGGRAPH ’98, ACM, pp. 264–.

[Sil95] Sillion F. X.: A Unified Hierarchical Algorithm for Global Illumina
tion with Scattering Volumes and Object Clusters. IEEE Transactions
on Visualization and Computer Graphics 1, 3 (Sept. 1995), 240–254.

[SKS02] Sloan P.-P., Kautz J., Snyder J.: Precomputed radiance trans
fer for real-time rendering in dynamic, low-frequency lighting envi
ronments. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 2002), SIG
GRAPH ’02, ACM, pp. 527–536.

[Slo08] Sloan P.-P.: Stupid Spherical Harmonics (SH) Tricks. Game Devel
opers Conference, 2008.

[SLS05] Sloan P.-P., Luna B., Snyder J.: Local, deformable precomputed
radiance transfer. In ACM SIGGRAPH 2005 Papers (New York, NY,
USA, 2005), SIGGRAPH ’05, ACM, pp. 1216–1224.

[SS95] Schröder P., Sweldens W.: Spherical wavelets: efficiently repre
senting functions on the sphere. In Proceedings of the 22nd annual con
ference on Computer graphics and interactive techniques (New York,
NY, USA, 1995), SIGGRAPH ’95, ACM, pp. 161–172.

[SS00] Simmons M., Séquin C.: Tapestry: A dynamic mesh-based display
representation for interactive rendering. Proceedings of the Eurograph
ics Workshop on Rendering (Jan 2000).

[SS10] Schwarz M., Seidel H.-P.: Fast parallel surface and solid voxeliza
tion on GPUs. ACM Transactions on Graphics 29, 6 (Proceedings of
SIGGRAPH Asia 2010) (Dec. 2010), 179:1–179:9.

[SSG∗00] Stamminger M., Scheel A., Granier X., Perez-Cazorla F.,
Drettakis G., Sillion F. X.: Efficient glossy global illumination
with interactive viewing. Computer Graphics Forum 19, 1 (2000), 13–
25.

[ST07] Saleh B., Teich M.: Fundamentals of Photonics.
Pure and Applied Optics. Wiley, 2007.

Wiley Series in

173

[SW00]	 Suykens F., Willems Y. D.: Density control for photon maps. In
Proceedings of the Eurographics Workshop on Rendering Techniques
2000 (London, UK, UK, 2000), Springer-Verlag, pp. 23–34.

[SZS∗08]	 Sun X., Zhou K., Stollnitz E., Shi J., Guo B.: Interactive
relighting of dynamic refractive objects. SIGGRAPH ’08: SIGGRAPH
2008 papers (Aug 2008).

[Tin03]	 Tinkham M.: Group Theory and Quantum Mechanics. Dover Publi
cations, 12 2003.

[TMS04a]	 Tawara T., Myszkowski K., Seidel H.-P.: Efficient rendering of
strong secondary lighting in photon mapping algorithm. In Theory and
Practice of Computer Graphics, 2004. Proceedings (2004), pp. 174–178.

[TMS04b]	 Tawara T., Myszkowski K., Seidel H.-P.: Exploiting temporal
coherence in final gathering for dynamic scenes. Proceedings of the
Computer Graphics International (Jan 2004).

[TPWG02]	 Tole P., Pellacini F., Walter B., Greenberg D.: Interactive
global illumination in dynamic scenes. ACM Transactions on Graphics
(Jan 2002).

[Vea98]	 Veach E.: Robust monte carlo methods for light transport simulation.
PhD thesis, Stanford, CA, USA, 1998.

[WABG06]	 Walter B., Arbree A., Bala K., Greenberg D.: Multidi
mensional lightcuts. SIGGRAPH ’06: SIGGRAPH 2006 Papers (Jul
2006).

[War94]	 Ward G. J.: The radiance lighting simulation and rendering system.
In Proceedings of the 21st annual conference on Computer graphics and
interactive techniques (New York, NY, USA, 1994), SIGGRAPH ’94,
ACM, pp. 459–472.

[WAT92]	 Westin S. H., Arvo J. R., Torrance K. E.: Predicting re
flectance functions from complex surfaces. In Proceedings of the 19th
annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 1992), SIGGRAPH ’92, ACM, pp. 255–264.

174

[WC92] Wyant J., Creath K.: Basic wavefront aberration theory for optical
metrology. Applied Optics and Optical Engineering (Jan 1992).

[WDG02] Walter B., Drettakis G., Greenberg D.: Enhancing and opti
mizing the render cache. Proceedings of the 13th Eurographics workshop
on Rendering (Jan 2002).

[WDP99] Walter B., Drettakis G., Parker S.: Interactive rendering using
the render cache. Rendering Techniques (Jan 1999).

[WFA∗05] Walter B., Fernandez S., Arbree A., Bala K., Donikian
M., Greenberg D.: Lightcuts: a scalable approach to illumination.
SIGGRAPH ’05: SIGGRAPH 2005 Papers (Jul 2005).

[WH80] Whitted T., Holmdel N.: An improved illumination model for
shaded display. Communications 23, 6 (June 1980), 343–349.

[WH92] Ward G., Heckbert P.: Irradiance gradients. Third Eurographics
Workshop on Rendering (Jan 1992).

[Wik13] Wikipedia: Directx, 2013. [Online; accessed 28-June-2013].

[WRC88] Ward G. J., Rubinstein F. M., Clear R. D.: A ray tracing solu
tion for diffuse interreflection. In Proceedings of the 15th annual con
ference on Computer graphics and interactive techniques (New York,
NY, USA, 1988), SIGGRAPH ’88, ACM, pp. 85–92.

[Yeu13] Yeung S.: Implementing voxel cone tracing.
http://simonstechblog.blogspot.com/2013/01/implementing-voxel
cone-tracing.html, 02 2013.

[YIDN07] Yue Y., Iwasaki K., Dobashi Y., Nishita T.: Global illumination
for interactive lighting design using light path pre-computation and hi
erarchical histogram estimation. Computer Graphics and Applications
(Jan 2007).

[ZCEP07] Zhang L., Chen W., Ebert D. S., Peng Q.: Conservative vox
elization. Visual Computer 23, 9 (Aug. 2007), 783–792.

[ZHL∗05] Zhou K., Hu Y., Lin S., Guo B., Shum H.-Y.: Precomputed
shadow fields for dynamic scenes. In ACM SIGGRAPH 2005 Papers
(New York, NY, USA, 2005), SIGGRAPH ’05, ACM, pp. 1196–1201.

175

[ZTTS06] Ziegler G., Tevs A., Theobalt C., Seidel H.-P.: On-the-fly
point clouds through histogram pyramids. In 11th International Fall
Workshop on Vision, Modeling and Visualization 2006 (VMV2006)
(Aachen, Germany, 2006), Kobbelt L., Kuhlen T., Aach T., Wester
mann R., (Eds.), European Association for Computer Graphics (Eu
rographics), Aka, pp. 137–144.

176

APPENDICES

177

Appendix A: Additional Images

178

Figure A.1: Comparison of the quality of specular cone tracing for the three voxel
formats for the Sponza scene at 2563, from top to bottom istropic, anisotropic,
and spherical harmonic voxel formats respectively.

179

Figure A.2: Comparison of the quality of diffuse cone tracing for the three voxel
formats for the Sponza scene at 2563, from top to bottom istropic, anisotropic, and
spherical harmonic voxel formats respectively. Images with diffuse cones traced
using the generic method are on the left, while images with diffuse cones traced
using the specialized method are on the right.

180

Direct Light Direct Light + Shadow

Light + Shadow + Diffuse Interreflection Light + Shadow + Specular Reflection

Light + Shadow + Diffuse + Specular Light + Shadow + Diffuse + Specular + AO

Figure A.3: Collage of Sponza Atrium images illustrating the incremental addi
tional of direct and indirect illumination effects, and the improved realism of the
scene.

181

Direct Light Direct Light + Shadow

Light + Shadow + Diffuse Interreflection Light + Shadow + Specular Reflection

Light + Shadow + Diffuse + Specular Light + Shadow + Diffuse + Specular + AO

Figure A.4: Collage of images of the Ruins scene illustrating the incremental addi
tional of direct and indirect illumination effects, and the improved realism of the
scene.

182

Appendix B: Shader Code

183

vec4 unpackRGBCount (u int val)
{

vec4 rgba ;
//mask o f the approach quadrant o f the uint then s h i f t i t to the end

rgba . r = f l o a t ((val & 0 x000000FF)) ; // red

rgba . g = f l o a t ((val & 0 x0000FF00) >> 8 u) ; // green

rgba . b = f l o a t ((val & 0 x00FF0000) >> 16 u) ; // blue

rgba . a = f l o a t ((val & 0 xFF000000) >> 24 u) ; // count

r e turn rgba ;

}
uint packRGBCount (vec4 val)
{

//Mask o f the l a s t 8 b i t s then s h i f t them to the appropr ia t e quadrant
uint r = (u int (val . r) & 0 x000000FF) ;

uint g = (u int (val . g) & 0 x000000FF) << 8u ;

uint b = (u int (val . b) & 0 x000000FF) << 16 u ;

uint a = (u int (val . a) & 0 x000000FF) << 24 u ;

//OR the va lues toge the r
r e turn (r | g | b | a) ;

}
void imageAtomicAverageRGBA8Custom (l ayout (r32ui) coherent volatile uimage3D ←�

voxels , i v e c 3 coord , vec3 nextVec3)
{

uint nextUint = packRGBCount (vec4 (nextVec3 ∗255 .0 f , 1)) ;
uint prevUint ;
uint currUint = 0 ; //packRGBCount(vec4 (0 , 0 , 0 , 99 9)) ;
vec4 currVec4 ;

vec3 average ;

uint count ;

//Loop as long as d e s t i n a t i o n value g e t s changed by other threads

// compares currUint to nextUint

whi le ((prevUint = imageAtomicCompSwap (voxels , coord , currUint , nextUint)) ←�

!= currUint)
{

currUint = prevUint ; // s t o r e packed rgb average and count
currVec4 = unpackRGBCount (currUint) ; // unpack s to r e d rgb average and count

average = currVec4 . rgb / 255 .0 f ; // e x t r a c t rgb average

count = uint (currVec4 . a) ; // e x t r a c t count

//Compute the running average
average = (average ∗ count + nextVec3) / f l o a t (count +1) ;

//Pack new average and incremented count back i n t o a u int
nextUint = packRGBCount (vec4 (average ∗255 .0 f , (count +1))) ;

}
}

Figure B.1: Implementation of a moving average using imageAtomicCompSwap.

184

vec4 anisoVoxelFetch (vec3 pos , f l o a t lod , vec4 n)
{

vec4 sampleX = (n . x < 0 .0 f) ? textureLod (VoxelsNegX , pos , lod) : textureLod (←�
VoxelsPosX , pos , lod) ;

vec4 sampleY = (n . y < 0 .0 f) ? textureLod (VoxelsNegY , pos , lod) : textureLod (←�
VoxelsPosY , pos , lod) ;

vec4 sampleZ = (n . z < 0 .0 f) ? textureLod (VoxelsNegZ , pos , lod) : textureLod (←�
VoxelsPosZ , pos , lod) ;

vec3 nSquared = n . xyz ∗ n . xyz ;
vec4 filtered = nSquared . x ∗ sampleX + nSquared . y ∗ sampleY + nSquared . z ∗ ←�

sampleZ ;
r e turn filtered ;

}

Figure B.2: Anisotropic voxel sampling using the “ambient cube” method described
in [MMG06].

185

#d e f i n e shCoe f f vec4 (0 .2820947918 , −0.488602512 , 0 .488602512 , −0.488602512)

vec4 shEvaluate (vec3 dir)
{

r e turn shCoeff ∗ vec4 (1 . 0 f , dir . yzx) ;
}

vec4 shVoxelFetch (in vec3 pos , in f l o a t lod , in vec4 dir)
{

vec4 rSH , gSH , bSH ;
rSH [0] = textureLod (r0Tex , pos , lod) . x ;
rSH [1] = textureLod (r1Tex , pos , lod) . x ;
rSH [2] = textureLod (r2Tex , pos , lod) . x ;
rSH [3] = textureLod (r3Tex , pos , lod) . x ;
gSH [0] = textureLod (g0Tex , pos , lod) . x ;
gSH [1] = textureLod (g1Tex , pos , lod) . x ;
gSH [2] = textureLod (g2Tex , pos , lod) . x ;
gSH [3] = textureLod (g3Tex , pos , lod) . x ;
bSH [0] = textureLod (b0Tex , pos , lod) . x ;
bSH [1] = textureLod (b1Tex , pos , lod) . x ;
bSH [2] = textureLod (b2Tex , pos , lod) . x ;
bSH [3] = textureLod (b3Tex , pos , lod) . x ;

vec4 shColor ;

vec4 shCoeff = shEvaluate(− normal ize (dir . xyz)) ;

shColor . r = clamp (dot (rSH , shCoeff) , 0 . 0 , 1 . 0) ;

shColor . g = clamp (dot (gSH , shCoeff) , 0 . 0 , 1 . 0) ;

shColor . b = clamp (dot (bSH , shCoeff) , 0 . 0 , 1 . 0) ;

shColor . a = textureLod (aTex , pos , lod) . a ;

r e turn shColor ;
}

Figure B.3: Spherical harmonic voxel sampling method described in Section 5.2.3.

186

vec4 coneTrace (vec3 origin , vec3 nS , vec3 dir , f l o a t coneRatio , f l o a t maxDist , ←�
f l o a t aoDist , f l o a t voxSize , f l o a t volDim , f l o a t fMin , f l o a t sinHalfAngle)

{
vec4 accum = vec4 (0) ;
f l o a t opacity = 0 .0 f ;

f l o a t NdotR = dot (nS , dir) ;
f l o a t invNdotR = 1 / NdotR ;

f l o a t h = fMin ∗ voxSize ;
f l o a t d0 = h ∗ invNdotR ;
f l o a t r0 = d0 ∗ sinHalfAngle ;

f l o a t startDist = d0−r0 ;
f o r (f l o a t dist = startDist ; dist <= maxDist && accum . w < 1 . 0 ;)
{

f l o a t sampleRadius = coneRatio ∗ dist ;
f l o a t sampleDiameter = max (2 . 0 f∗ sampleRadius , voxSize) ;
f l o a t sampleLOD = l og2 (sampleDiameter ∗ volDim) ;
vec3 samplePos = origin + dir ∗ (dist + sampleRadius) ;
vec4 sampleValue = voxelFetch (samplePos , sampleLOD , vec4 (dir , 1)) ;
f l o a t sampleWeight = 1 .0 f − accum . w ;
accum += sampleValue ∗ sampleWeight ;
dist += sampleDiameter ;
opacity = (dist < aoDist) ? accum . w : opacity ;

}
r e turn vec4 (accum . xyz ,1− opacity) ;

}

Figure B.4: Shader code for a generic voxel cone tracing routine. Note, the
voxelFetch function must be implemented appropriately for the selected voxel
storage format.

187

vec4 diffuseConeTrace60 (vec3 origin , vec3 nS , vec3 dir , f l o a t coneRatio , f l o a t ←�
maxDist , f l o a t aoDist , f l o a t voxSize)

{
vec4 accum = vec4 (0) ;
f l o a t opacity = 0 .0 f ;
vec3 samplePos ;
vec4 sampleValue ;
f l o a t sampleWeight ;
f l o a t sampleRadius = 0 .5 ∗ voxSize ;
f l o a t sampleLOD = 0 ;
f o r (f l o a t dist = voxSize ; dist <= maxDist && accum . w < 1 . 0 ;)
{

samplePos = origin + dir ∗ dist ;
sampleValue = voxelFetch (samplePos , sampleLOD , vec4 (dir , 1)) ;
sampleWeight = 1 .0 f − accum . w ;
accum . xyz += sampleValue . xyz ∗ sampleWeight ;
accum . w += sampleValue . w ∗ sampleWeight ;
sampleLOD += 1 .0 f ;
sampleRadius ∗= 2 .0 f ;
dist ∗= 2 .0 f ;
opacity = (dist < aoDist) ? accum . w : opacity ;

}
r e turn vec4 (accum . xyz ,1− opacity) ;

}

Figure B.5: Shader code for a specialized 60° diffuse cone tracing routine. Note,
the voxelFetch function must be implemented appropriately for the selected voxel
storage format.

	Introduction
	Motivation
	Contributions
	Outline

	Background
	Light Transport Theory
	The Nature of Light
	Radiometry
	Materials
	The Rendering Equation
	Hemispherical Formulation
	Area Formulation
	Direct and Indirect Illumination

	Spherical Harmonics
	Projection and Expansion
	Properties
	Convolution
	Orthonormality
	Rotational Invariance
	Double Product Integral
	Double Product Projection

	GPU Evolution
	API Evolution

	Related Work
	Early Global Illumination
	Ray Tracing
	Radiosity

	Evolution of Global Illumination
	GPU Ray Tracing
	GPU Radiosity
	Hierarchical Radiosity
	Instant Radiosity
	Lightcuts
	Photon Mapping

	Advanced Global Illumination
	Advanced Hierarchical Methods
	Precomputed Radiance Transfer
	(Ir)Radiance Caching
	Spherical Function Representation

	Ambient Occlusion
	Implicit Visibility

	Volumetric Techniques
	Light Propagation Volumes
	Voxel Cone Tracing
	Voxelization

	Voxelization
	Voxelization
	Triangle-parallel voxelization
	Fragment-parallel voxelization
	Hybrid Voxelization
	Voxel-List Construction
	Attribute Interpolation

	Voxelization Performance
	Discussion of Voxelization

	Voxel Storage, Sampling, & Mipmapping
	Voxel Storage
	Isotropic Voxel Storage
	Anisotropic Voxel Storage
	Spherical Harmonic storage
	Voxelization Performance & Costs

	Voxel Sampling
	Isotropic Sampling
	Anisotropic Sampling
	Spherical Harmonic Sampling

	Voxel Mipmapping
	Isotropic Mipmapping
	Anisotropic Mipmapping
	Spherical Harmonic Mipmapping

	Sparse Mipmapping Optimizations

	Voxel Based Illumination
	Voxel Cone Tracing
	Avoiding self intersection
	Alternate Diffuse Cone Tracing

	Soft Shadows
	Ambient Occlusion
	Diffuse Interreflection
	Specular Reflection

	Voxel Based Pipeline
	Direct Illumination
	Indirect Illumination
	Final Rendering & Results

	Conclusions and Future Work
	Bibliography
	Appendices
	Additional Images
	Shader Code

